Version: 1.1

Push swap

Because Swap _push isn’t as natural

[Summary \

This activity will make you sort data on a stack, with a limited set
of instructions, using the lowest possible number of actions. To
succeed you'll have to manipulate various types of algorithms and
choose the most appropriate solution (out of many) for optimized
data sorting. This is a group activity to be completed by exactly
2 learners.

_ J

#C #Complexity #Algo

42

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:

e Personal use: You are permitted to use the contents of this module solely for personal
purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

e Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:

Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Foreword

2 Common Instructions
3 Al Instructions

4 Introduction

5 Objectives

6 Mandatory part
6.1 Group project requirements
6.2 Therules
6.3 Algorithm requirements
6.3.1 Complexity model and operation constraints
6.3.2 Disorder metric (mandatory)
6.3.3 Required strategies
6.4 Example
6.5 The "push swap" program
6.5.1 Usage examples
6.6 Performance Benchmarks

7 Readme Requirements

8 Submission and peer-evaluation

//

Chapter 1

Foreword

Once upon a time in the mysterious lands of Computer Science, a certain Donald Knuth?
popularized the Big-O notation to help us talk about how algorithms scale. Big-O is basically a
polite way of saying: "Your code will either run fast forever... or get so slow that you'll have
enough time to make coffee, drink it, and grow old while waiting."

Legend has it that in the early days, programmers didn’'t have Big-O. They just ran their code
and, if it took too long, they blamed the hardware. Then Big-O arrived and ruined the fun
by proving mathematically that sometimes your algorithm is just bad — no matter how many
hamsters you put in the CPU wheel.

Why does this matter for push_swap? Because here you are, armed with two stacks and a
bunch of awkwardly limited moves, trying to sort numbers faster than a sleep-deprived insertion
sort. Big-O will help you face the brutal truth: a brilliant O(nlog n) strategy will always outlive
your clumsy O(n?) one when the input grows. .. unless, of course, you choose to ignore the
math and watch your operation count skyrocket.

So as you design your algorithms, remember: Big-O is not here to scare you — it's here to
prevent you from becoming the person who writes:

pb; pa; pb; pa; pb; pa;

10,000 times in a row and then wonders why the checker hates them. Sort smart, not slow.

Big-O is not a popcorn size rating. .. but if it were, O(nlog n) would still be the sweet spot.

1Ves, the guy with the glorious beard and infinite patience.
(© 2025 Association 42. - All rights reserved

https://en.wikipedia.org/wiki/Donald_Knuth

//

Chapter 2

Common Instructions

e Your activity must be written in C.

e Your activity must be written in accordance with the Norm. If you have bonus files or
functions, they are included in the norm check, and you will receive a 0 if there is a norm
error inside.

e Your functions should not quit unexpectedly (segmentation fault, bus error, double free,
etc.) except for undefined behaviors. If this happens, your activity will be considered
non-functional and will receive a 0 during the review.

e All heap-allocated memory space must be properly freed when necessary. No memory leaks
will be tolerated.

e |f the subject requires it, you must submit a Makefile that will compile your source files
to the required output with the flags -Wall, -Wextra, and -Werror, using cc, and your
Makefile must not relink.

e Your Makefile must at least contain the rules $(NAME), all, clean, fclean, and re.

e |f your activity allows you to use your 1ibft, you must copy its sources and its associated
Makefile into a 1ibft folder. Your activity's Makefile must compile the library by using
its Makefile, then compile the activity.

e \We encourage you to create test programs for your activity, even though this work will
not be submitted and will not be graded. It will give you a chance to easily test your
work and your peers’ work. You will find these tests especially useful during your defense.
Indeed, during the defense, you are free to use your tests and/or the tests of the peer you
are evaluating.

e Submit your work to your assigned Git repository. Only the work in the Git repository will
be graded. If Deepthought is assigned to grade your work, it will be done after your peer
evaluations. If an error occurs in any section of your work during Deepthought’s grading,
the review will stop.

(© 2025 Association 42. - All rights reserved

//

Chapter 3

Al Instructions

® Context

During your learning journey, Al can assist with many different tasks. Take the time to explore
the various capabilities of Al tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it's code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

@® Main message

Use Al to reduce repetitive or tedious tasks.

Develop prompting skills — both coding and non-coding — that will benefit your future
career.

Learn how Al systems work to better anticipate and avoid common risks, biases, and
ethical issues.

Continue building both technical and power skills by working with your peers.

Only use Al-generated content that you fully understand and can take responsibility for.

@® Learner rules:

e You should take the time to explore Al tools and understand how they work, so you can
use them ethically and reduce potential biases.

e You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

e You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by Al.

e You should always seek peer review — don't rely solely on your own validation.

(© 2025 Association 42. - All rights reserved

//

@® Phase outcomes:

e Develop both general-purpose and domain-specific prompting skills.
e Boost your productivity with effective use of Al tools.

e Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

® Comments and examples:

e You'll regularly encounter situations — exams, evaluations, and more — where you must
demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

e Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

e Al tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

e Where Al tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

v Good practice:

| ask Al: “How do | test a sorting function?” It gives me a few ideas. | try them out and
review the results with a peer. We refine the approach together.

X Bad practice:

| ask Al to write a whole function, copy-paste it into my activity. During peer-evaluation, |
can't explain what it does or why. | lose credibility — and | fail my activity.

v Good practice:

| use Al to help design a parser. Then | walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

X Bad practice:

| let Copilot generate my code for a key part of my activity. It compiles, but | can't explain
how it handles pipes. During the evaluation, | fail to justify and | fail my activity.

(© 2025 Association 42. - All rights reserved

//

Chapter 4

Introduction

The Push swap project is a very simple and highly straightforward algorithm project: data must
be sorted.

You have at your disposal a set of integer values, 2 stacks, and a set of operations to manipulate
both stacks.

Your goal? Write a program in C called push_swap which calculates and displays on the standard
output the smallest program, made of Push swap language operations, that sorts the integers
received as arguments.

Easy?

We'll see...

(© 2025 Association 42. - All rights reserved

//

Chapter 5

Objectives

The goal of this project is to make you discover algorithmic complexity in a very concrete way.

Sorting numbers is easy; sorting them fast with only two stacks and a handful of allowed moves
is another story. Sorting a fully random list and sorting an almost sorted list are also two
extremely different things.

You will quickly see how the choice of algorithm can make the difference between a quick win
and an endless scroll of operations.

(© 2025 Association 42. - All rights reserved

https://en.wikipedia.org/wiki/Analysis_of_algorithms

42

Chapter 6

Mandatory part

6.1

6.2

Group project requirements

This project must be completed by exactly 2 learners working together.

Both learners must contribute meaningfully to the project and understand all implemented
algorithms.

The repository must clearly indicate both learners’ contributions in the README.md file.

During the defense, both learners must be present and able to explain any part of the
code.

The project submission should include both learners’ logins in the repository.

The rules

You have two stacks named a and b.

At the beginning:

o The stack a contains a random amount of negative and/or positive numbers without
any duplicate.

o The stack b is empty.

The goal is to sort in ascending order numbers into stack a. To do so you have the
following operations at your disposal:

sa (swap a): Swap the first two elements at the top of stack a.
Do nothing if there is only one or no elements.

sb (swap b): Swap the first two elements at the top of stack b.
Do nothing if there is only one or no elements.

ss : sa and sb at the same time.

pa (push a): Take the first element at the top of b and put it at the top of a.
Do nothing if b is empty.

pb (push b): Take the first element at the top of a and put it at the top of b.
Do nothing if a is empty.

(© 2025 Association 42. - All rights reserved

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

//

ra (rotate a): Shift up all elements of stack a by one.
The first element becomes the last one.

rb (rotate b): Shift up all elements of stack b by one.
The first element becomes the last one.

rr : ra and rb at the same time.

rra (reverse rotate a): Shift down all elements of stack a by one.
The last element becomes the first one.

rrtb (reverse rotate b): Shift down all elements of stack b by one.
The last element becomes the first one.

rrr ;. rra and rrb at the same time.

6.3 Algorithm requirements

To enforce a rigorous understanding of algorithmic complexity (time and space), you must
implement four distinct sorting strategies and integrate them into your push_swap program.
Your program must be able to select a strategy at runtime based on the input configuration.

6.3.1 Complexity model and operation constraints

All strategies are implemented in C and must generate sequences of Push swap operations to
perform the sorting. This means:

e Your C algorithms analyze the input and generate the appropriate sequence of operations:
sa, sb, ss, pa, pb, ra, rb, rr, rra, rrb, rrr.

e The output of your strategy is the sequence of these operations that sorts the stack.

e \When you state a complexity class, it must reflect the cost measured in number of
Push swap operations generated, not the theoretical complexity of a classical array-
based algorithm.

6.3.2 Disorder metric (mandatory)

In this subject, disorder is a number between 0 and 1 that tells how far your initial stack a is
from being sorted.

If the numbers are already in the right order, the disorder is 0. If they are in the worst
possible order, the disorder is 1. Anything in between means your stack is partly sorted, but still
messy.

To calculate it, you can think of looking at all the possible pairs of numbers in the stack.
Each time a bigger number appears before a smaller one, that pair counts as a mistake. The
more mistakes you have, the closer the disorder is to 1.

function compute_disorder(stack a):
mistakes = 0
total_pairs = 0
for i from O to size(a)-1:
for j from i+l to size(a)-1:
total_pairs += 1
(© 2025 Association 42. - All rights reserved

//

if aflil > aljl:
mistakes += 1
return mistakes / total_pairs

You must measure the disorder before doing any moves.

(© 2025 Association 42. - All rights reserved

//

6.3.3 Required strategies

1. Simple algorithm (O(n?)):
Implement at least one baseline algorithm in the O(n?) class. Examples include:

e Insertion sort adaptation

e Selection sort adaptation

e Bubble sort adaptation

e Simple min/max extraction methods

2. Medium algorithm (O(n+/n)):
Implement at least one algorithm in the O(ny/n) class. Examples include:

e Chunk-based sorting (divide into y/n chunks)
e Block-based partitioning methods

e Bucket sort adaptations with y/n buckets

e Range-based sorting strategies

3. Complex algorithm (O(nlog n)):
Implement at least one algorithm in the O(nlog n) class. Examples include:

e Radix sort adaptation (LSD or MSD)

e Merge sort adaptation using two stacks

e Quick sort adaptation with stack partitioning

e Heap sort adaptation

e Binary indexed tree approaches

4. Custom adaptive algorithm (learner’s design): Design an adaptive strategy that selects

different internal methods depending on the measured disorder. You are not constrained
to any specific named algorithm; the internal techniques are entirely up to you. However,
your design must respect the following complexity targets per regime (in the Push swap
operation model):
Low disorder: if disorder < 0.2, your chosen method must run in O(n) time.

Medium disorder: if 0.2 < disorder < 0.5, your chosen method must run in O(n/n)
time.

High disorder: if disorder > 0.5, your chosen method must run in O(nlogn) time.

You must document in your repository (e.g., README.md) the rationale for your thresholds,
the internal techniques used in each regime, and a brief complexity argument (upper
bounds) for time and space within the Push _swap model.

(© 2025 Association 42. - All rights reserved

42

To illustrate the effect of some of these operations, let's sort a random list of integers. In this
example, we'll consider that both stacks grow from the right.

6.4 Example

Operations on stacks a and b (Part 1):

(© 2025 Association 42. - All rights reserved

11

Operations on stacks a and b (Part 2):

Exec ra rb (equiv. to rr):

Exec rra rrb (equiv. to rrr):

The integers in stack a get sorted in 12 operations. Can you do better?

(© 2025 Association 42. - All rights reserved

12

//

6.5 The "push swap" program

Program Name push_swap

Files to Submit Makefile, *.h, *.c

Makefile NAME, all, clean, fclean, re
Arguments stack a: A list of integers

External Functions

e read, write, malloc, free, exit

e ft_printf and any equivalent
YOU coded

Libft authorized Yes
Description Sort stacks

Your project must comply with the following rules:

e You have to turn in a Makefile which will compile your source files. |t must not relink.
e Global variables are forbidden.
e You must write a program named push_swap that takes as arguments:

o The stack a formatted as a list of integers (the first argument is the top of the
stack).
o An optional strategy selector:

--simple Forces the use of your O(n?) algorithm.
--medium Forces the use of your O(ny/n) algorithm.
--complex Forces the use of your O(nlog n) algorithm.

--adaptive Forces the use of your adaptive algorithm based on disorder. This is
the default behavior if no selector is given.

e The program must display the smallest list of Push_swap operations possible to sort stack
a, the smallest number being at the top.

e Operations must be separated by a \n and nothing else.
e The complexity class claimed for each algorithm must be valid in this model.

e The strategy selection must work for all valid inputs. Any selector flag should work
regardless of input size or disorder.

e |f no parameters are specified, the program must not display anything and give the prompt
back.

e In case of error, it must display "Error" followed by a \n on the standard error. Errors
include, for example: arguments that are not integers, integers outside the valid range, or
duplicate values.

(© 2025 Association 42. - All rights reserved

42

e Your binary must embed all four strategies (Simple O(n?), Medium O(ny/n), Complex
O(nlogn), and Adaptive). The selected strategy name and complexity class must be
available in --bench mode.

e The optional benchmark mode (--bench) must display, after sorting:

o The computed disorder (% with two decimals).
o The name of the strategy used and its theoretical complexity class.
o The total number of operations.

o The count of each operation type (sa, sb, ss, pa, pb, ra, rb, rr, rra, rrb, rrr).

The benchmark output must be sent to stderr and only appear when the flag is present.

6.5.1 Usage examples

Notation: lines prefixed with [bench] represent messages printed by the optional benchmark
mode (to stderr). The operation stream remains on stdout.

push swap with arguments:

$> ./push_swap 2 1 3 6 5 8

Default selection (--adaptive) and operation count:

push swap with arguments:

$> ARG="4 67 3 87 23"; ./push_swap --adaptive $ARG | wc -1
13

(© 2025 Association 42. - All rights reserved

//

Force the simple (O(n"2)) strategy:

push swap with arguments:

$> ./push_swap --simple 5 4 3 2 1
rra

pb

pb

Force the complex (O(n log n)) strategy and verify with the checker:
push _swap with checker:
$> ARG="4 67 3 87 23"; ./push_swap --complex $ARG | ./checker_linux

$ARG
0K

push swap with a large input:

push swap with large input:

$> shuf -i 0-9999 -n 500 > args.txt ; ./push_swap $(cat args.txt) |
wc -1

6784

$>

(© 2025 Association 42. - All rights reserved 15

//

Run with benchmark enabled; hide operations and show only metrics:

push swap with arguments:

$>shuf -i 0-9999 -n 500 > args.txt ; ./push_swap --bench $(cat
args.txt) 2> bench.txt | ./checker_linux $(cat args.txt)

0]

$> cat bench.txt

[bench] disorder: 49.93Y

[bench] strategy: Adaptive / 0(n\/n)

[bench] total_ops: 7997

[bench] sa: O sb: 0 ss: O pa: 500 pb: 500

[bench] ra: 4840 1rb: 1098 rr: O rra: O zrrb: 1059 rrr: O

Pipe operations to the checker while saving benchmark to a file:

push swap with bench output:

$> ARG="4 67 3 87 23"; ./push_swap --bench --adaptive $ARG 2>
bench.txt | ./checker_linux $ARG

0]

$> cat bench.txt

[bench] disorder: 40.00%

[bench] strategy: Adaptive / 0(ny/n)

[bench] total_ops: 13

[bench] sa: O sb: 0O ss: 0O pa: 5 pb: 5

[bench] ra: 2 rb: 1 rr: 0 zrra: 0 rrb:

Error management examples:

push swap with invalid arguments:

$> ./push_swap --adaptive O one 2 3
Error

$> ./push_swap --simple 3 2 3

Error

(© 2025 Association 42. - All rights reserved 16

42

To validate this project, you must achieve certain performance targets with a minimal number
of operations:

6.6 Performance Benchmarks

e For 100 random numbers, your program should use:

o Less than 2000 operations to pass (minimum requirement)
o Less than 1500 operations for good performance

o Less than 700 operations for excellent performance
e For 500 random numbers, your program should use:

o Less than 12000 operations to pass (minimum requirement)
o Less than 8000 operations for good performance

o Less than 5500 operations for excellent performance

All of this will be verified during your evaluation using the provided checker.

(© 2025 Association 42. - All rights reserved

17

//

Chapter 7

Readme Requirements

A README.md file must be provided at the root of your Git repository. Its purpose is to allow
anyone unfamiliar with the activity (peers, staff, recruiters, etc.) to quickly understand what
the activity is about, how to run it, and where to find more information on the topic.

The README.md must include at least:

e The very first line must be italicized and read: This activity has been created as part of
the 42 curriculum by <login1>[, <login2>[, <login3>[...]]].

e A "Description" section that clearly presents the activity, including its goal and a brief
overview.

e An "Instructions" section containing any relevant information about compilation, instal-
lation, and/or execution.

e A "Resources" section listing classic references related to the topic (documentation,
articles, tutorials, etc.), as well as a description of how Al was used — specifying for
which tasks and which parts of the activity.

= Additional sections may be required depending on the activity (e.g., usage examples,
feature list, technical choices, etc.).

Any required additions will be explicitly listed below.

e A detailed explanation and justification of the algorithms selected for this project must
also be included.

your campus.

@ English is recommended; alternatively, you may use the main language of

(© 2025 Association 42. - All rights reserved 18

//

Chapter 8

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don't hesitate to double check the names of your files to
ensure they are correct.

Group project submission requirements:
e Both learners must be listed as contributors in the repository.
e The README.md must clearly document each learner’s contributions.
e Both learners must be present during the defense.
e Each learner must be able to explain and defend any part of the implemented code.

During the review, a brief modification of the activity may occasionally be requested. This
could involve a minor behavior change, a few lines of code to write or rewrite, or an easy-to-add
feature.

While this step may not be applicable to every activity, you must be prepared for it if it is
mentioned in the review guidelines.

This step is meant to verify your actual understanding of a specific part of the activity. The
modification can be performed in any development environment you choose (e.g., your usual
setup), and it should be feasible within a few minutes — unless a specific timeframe is defined
as part of the review.

You can, for example, be asked to make a small update to a function or script, modify a display,
or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the review guidelines and may vary from
one review to another for the same activity.

(© 2025 Association 42. - All rights reserved 19

	Foreword
	Common Instructions
	AI Instructions
	Introduction
	Objectives
	Mandatory part
	Group project requirements
	The rules
	Algorithm requirements
	Complexity model and operation constraints
	Disorder metric (mandatory)
	Required strategies

	Example
	The "push_swap" program
	Usage examples

	Performance Benchmarks

	Readme Requirements
	Submission and peer-evaluation

