Version: 1.0

Data Quest

Mastering Python Collections for Data Engineering

[Summary \

Journey through the digital realm as a data engineer! Master
Python's powerful data structures while building game analytics
systems, processing player statistics, and creating streaming data
pipelines in the Pixel Dimension.

- J

[#Python J [#DataEngineering] [#Collections J

L7

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:

e Personal use: You are permitted to use the contents of this module solely for personal
purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

e Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:

Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Foreword

2 Al Instructions

3 Introduction

4 Common Instructions

4.1 General Rules
4.2 Additional Guidelines
4.3 Testing Resources

5 Exercise 0:
6 Exercise 1:
7 Exercise 2:
8 Exercise 3:
9 Exercise 4:
10 Exercise 5:

11 Exercise 6:

Command Quest
Score Cruncher
Position Tracker
Achievement Hunter
Inventory Master
Stream Wizard

Data Alchemist

12 Turn in and Submission

11
13
15
17
19

22

//

Chapter 1

Foreword

Welcome back to the digital realm, data engineer!

Your journey through Python's foundations has prepared you well. You've mastered the basic
syntax that powers digital gardens, built robust class hierarchies that model real-world systems,
and learned to handle the unexpected with graceful exception management. Now, as you step
into the Pixel Dimension, you're ready to tackle the heart of data engineering: collections
and data structures.

Picture this: In 1980, Pac-Man's entire game state—every dot, ghost position, and score—fit
in just 16KB of RAM. The programmers had to be wizards of efficiency! They discovered
that organizing data wasn't just about saving memory—it was about unlocking gaming magic.
Fast-forward to today: Fortnite processes over 10 million concurrent players, each generating
thousands of data points per second. Same principles, bigger playground!

Python's collection types are like your gaming inventory: lists are your trusty backpack (ordered,
expandable), tuples are your equipped armor (immutable, reliable), sets are your achievement
collection (unique, no duplicates), and dictionaries are your spell book (instant lookups by
name). Each has its superpower!

But here’'s where it gets epic: generators and comprehensions are Python's ultimate combo
moves. Imagine processing a million player records without breaking a sweat—that's generator
magic! Or transforming complex data with one elegant line—that's comprehension power!

In this quest, you'll build the "PixelMetrics 3000"—a game analytics platform that would make

even the developers of Minecraft jealous. Every exercise unlocks a new data superpower, and
by the end, you'll be wielding Python collections like a data engineering legend!

(© 2025 Association 42. - All rights reserved

//

Chapter 2

Al Instructions

® Context

During your learning journey, Al can assist with many different tasks. Take the time to explore
the various capabilities of Al tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it's code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

@® Main message

Use Al to reduce repetitive or tedious tasks.

Develop prompting skills — both coding and non-coding — that will benefit your future
career.

Learn how Al systems work to better anticipate and avoid common risks, biases, and
ethical issues.

Continue building both technical and power skills by working with your peers.

Only use Al-generated content that you fully understand and can take responsibility for.

@® Learner rules:

e You should take the time to explore Al tools and understand how they work, so you can
use them ethically and reduce potential biases.

e You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

e You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by Al.

e You should always seek peer review — don't rely solely on your own validation.

(© 2025 Association 42. - All rights reserved

//

@® Phase outcomes:

e Develop both general-purpose and domain-specific prompting skills.
e Boost your productivity with effective use of Al tools.

e Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

® Comments and examples:

e You'll regularly encounter situations — exams, evaluations, and more — where you must
demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

e Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

e Al tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

e Where Al tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

v Good practice:

| ask Al: “How do | test a sorting function?” It gives me a few ideas. | try them out and
review the results with a peer. We refine the approach together.

X Bad practice:

| ask Al to write a whole function, copy-paste it into my activity. During peer-evaluation, |
can't explain what it does or why. | lose credibility — and | fail my activity.

v Good practice:

| use Al to help design a parser. Then | walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

X Bad practice:

| let Copilot generate my code for a key part of my activity. It compiles, but | can't explain
how it handles pipes. During the evaluation, | fail to justify and | fail my activity.

(© 2025 Association 42. - All rights reserved

//

Chapter 3

Introduction

Welcome to Data Quest: The Pixel Dimension!

You've conquered Python basics, mastered classes, and tamed exceptions. Now it's time for the
fun part: becoming a data wizard! You're about to build the "PixelMetrics 3000"—the most
epic game analytics platform this side of the digital universe.

Think of this as your Pokemon journey, but instead of catching creatures, you're collecting data
superpowers:

e Level 0: Command Quest - Master command-line communication
e Level 1: Score Cruncher - Master lists by analyzing player scores

Level 2: Position Tracker - Use tuples to navigate game worlds

Level 3: Achievement Hunter - Leverage sets to track unique accomplishments

Level 4: Inventory Master - Build complex systems with dictionaries

Level 5: Stream Wizard - Process infinite data with generators

Level 6: Data Alchemist - Transform everything with comprehensions

Each exercise is like unlocking a new ability in your favorite RPG. Start simple, level up gradually,
and by the end you'll be the Neo of Python data structures!

IMPORTANT: This project focuses on data structure mastery. Your pro-

& grams should demonstrate practical data engineering scenarios while show-
casing the unique strengths of each collection type.

(© 2025 Association 42. - All rights reserved

42

Chapter 4

Common Instructions

4.1 General Rules

e Your project must be written in Python 3.10 or later.

e Your project must adhere to the flake8 coding standard.

e Your functions should handle exceptions gracefully to avoid crashes.

e For this project, only sys import is allowed for command-line processing.

e No file I/O operations are allowed - all data must be processed in-memory or via command-
line arguments.

e Focus on demonstrating collection usage patterns clearly.

e Show both basic operations and advanced techniques for each data structure.

4.2 Additional Guidelines

e Create test programs to verify project functionality (not submitted or graded).
e Submit your work to the assigned Git repository.

e Only the content in this repository will be graded.

4.3 Testing Resources

To help you test your implementations and generate sample data, we've provided helpful tools
in a testing archive:

e Testing Archive: Extract data_quest_tools.tar.gz (provided alongside the project)
to access testing utilities

e Main Data Generator: data_generator.py - Generate command-line ready data for all
exercises (0-6)

(© 2025 Association 42. - All rights reserved

//

e Exercise 0 Helper: exercise_0_help.py - Discover sys.argv and command-line argu-
ments

e Exercise 1 Helper: exercise_1_helper.py - Elegant score analytics with realistic data
patterns

e Advanced Helper: advanced_data_helper.py - Complex data scenarios and perfor-
mance testing

Extract the tools archive with: tar -xzf data_quest_tools.tar.gz

Quick Start Examples:

Generate test commands for all exercises
python3 data_generator.py

Get specific exercise help
python3 exercise_O_help.py
python3 exercise_1_helper.py

Generate command-line ready data
python3 data_generator.py 1 --count 10 --format argv

These tools generate command-line ready data that you can copy and paste directly into your
terminal. No file operations needed - everything works with the concepts you already know!

The testing tools demonstrate elegant Python patterns and data genera-
@ tion techniques. They're designed to use only concepts appropriate for your

current learning level - no advanced file |/O or JSON processing required.

(© 2025 Association 42. - All rights reserved

//

Chapter 5

Exercise 0: Command Quest

I Exercise: 0
'V

Directory: ex0/

ft _command quest

Files to Submit: ft_command_quest.py

Authorized: import sys, sys.argv, len(), print()

Welcome, Data Adventurer! Every epic quest begins with understanding your tools. In the
digital realm, programs need to receive instructions from the outside world. Your first mission:
discover how programs can receive messages from their users!

Your Quest: Build a simple command interpreter that shows you’'ve mastered the art of receiv-
ing external data. Think of it like learning to read quest scrolls that players send to your game!

What makes this magical:
e Discover how programs can receive information from the command line
e |earn to process different types of input data
e Handle cases where no information is provided

e Display information in a user-friendly way

Power-up tip: Every program is like a character in an RPG—it needs to know what the player
wants it to do. The command line is how players communicate their wishes!

(© 2025 Association 42. - All rights reserved

Example:

$> python3 ft_command_quest.py

=== Command Quest ===

No arguments provided!

Program name: ft_command_quest.py
Total arguments: 1

$> python3 ft_command_quest.py hello world 42
=== Command Quest ===

Program name: ft_command_quest.py

Arguments received: 3

Argument 1: hello

Argument 2: world

Argument 3: 42

Total arguments: 4

$> python3 ft_command_quest.py "Data Quest"
=== Command Quest ===

Program name: ft_command_quest.py
Arguments received: 1

Argument 1: Data Quest

Total arguments: 2

How does your program know what the user wants it to do? What's the
difference between the program name and the arguments?

(© 2025 Association 42. - All rights reserved

//

Chapter 6

Exercise 1: Score Cruncher

l Exercise: 1

Directory: ex1/
Files to Submit: ft_score_analytics.py

ft _score analytics

Authorized: sys.argv, len(), sum(), max(), min(), int(),
print(), try/except

Mission Briefing: Now that you've mastered command communication, time for your first real
data quest! The PixelMetrics 3000 needs a Score Cruncher module. Think of it like the leader-
board system in your favorite game—but you're building the engine that powers it!

Your mission (should you choose to accept it):

e Accept player scores from the command line (like cheat codes, but legal!)

Use lists to store and organize the scores

Calculate some basic stats that would make any game dev happy

Handle the "oops, | typed 'banana’ instead of '1000"" scenarios gracefully

Make the output look cool enough to impress your gaming buddies

Power-up tip: Lists are like your inventory in an RPG—you can add items, count them, find
the best one, and organize them however you want!

python3 ft_score_analytics.py 1500 2300 1800 2100 1950

(© 2025 Association 42. - All rights reserved

Example Usage:

$> python3 ft_score_analytics.py 1500 2300 1800 2100 1950
=== Player Score Analytics ===

Scores processed: [1500, 2300, 1800, 2100, 1950]

Total players: b5

Total score: 9650

Average score: 1930.0

High score: 2300

Low score: 1500

Score range: 800

$> python3 ft_score_analytics.py

=== Player Score Analytics ===

No scores provided. Usage: python3 ft_score_analytics.py <scorel>
<score2> ...

How do lists help you process sequential data? What makes them perfect
for command-line data processing?

(© 2025 Association 42. - All rights reserved 10

//

Chapter 7

Exercise 2: Position Tracker

l Exercise: 2

Directory: ex2/
Files to Submit: ft_coordinate_system.py

ft _coordinate system

Authorized: import sys, sys.argv, import math, tuple(), int(),
float(), print(), split(), try/except, math.sqrt()

Level Up! Time to master 3D coordinates! Remember playing games where you teleport to
specific locations in a 3D world? Or when you need to find the distance between two points in
3D space? That's exactly what we're building!

Your Quest: Build a 3D coordinate system using tuples. Think of tuples as GPS coordinates
that can't be accidentally changed—perfect for game positions!

What makes this fun:
e Create 3D positions like a game's spawn points: (x, y, z)

e Calculate distances using the 3D Euclidean distance formula: sqrt ((x2-x1)2 + (y2-y1)2
+ (z2-z1)2)

e Parse coordinate strings (like teleport commands!)

e Show off tuple unpacking magic (it's like unwrapping a present!)

Power-up tip: Tuples are like coordinates written in stone—once created, they won't change.
Perfect for 3D positions, colors, or any data that should stay put!

Distance Formula Explained: To calculate the distance between two 3D points, we use the
Euclidean distance formula. For points (x1, y1, z1) and (x2, y2, z2), the distance is
math.sqrt ((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2). This is just the 3D extension of the
Pythagorean theorem!

(© 2025 Association 42. - All rights reserved

Remember to handle the classic "l typed "abc’ instead of '123'" error gracefully!

Example:

$> python3 ft_coordinate_system.py
=== Game Coordinate System ===

Position created: (10, 20, 5)
Distance between (0, 0, 0) and (10, 20, 5): 22.91

Parsing coordinates: "3,4,0"
Parsed position: (3, 4, 0)
Distance between (0, O, 0) and (3, 4, 0): 5.0

Parsing invalid coordinates: '"abc,def,ghi"

Error parsing coordinates: invalid literal for int() with base 10:
>abc’

Error details - Type: ValueError, Args: ("invalid literal for
int() with base 10: ‘’abc’",)

Unpacking demonstration:
Player at x=3, y=4, z=0
Coordinates: X=3, Y=4, Z=0

Why are tuples perfect for 3D coordinate data? How does unpacking make
your code more readable and powerful?

(© 2025 Association 42. - All rights reserved 12

//

Chapter 8

Exercise 3: Achievement Hunter

l Exercise: 3

Directory: ex3/
Files to Submit: ft_achievement_tracker.py

ft _achievement tracker

Authorized: set(), len(), print(), union(), intersection(),
difference()

Achievement Unlocked! Time to build the coolest achievement system ever! You know how
satisfying it is when you unlock that rare achievement? Now you're building the system that
tracks them all!

Your Mission: Create an Achievement Hunter using sets—the perfect tool for handling unique
collections. No duplicates allowed in the hall of fame!

What makes this epic:

e Track unique achievements (no "First Kill" counted twice!)

Find achievements shared by multiple players (the "common ground")

Spot the ultra-rare achievements (bragging rights material!)

See who's missing what achievements (gotta catch 'em all!)

Build player communities based on shared accomplishments

Power-up tip: Sets are like your trophy case—each achievement appears exactly once, and you
can instantly check if you have it or compare collections with friends!

(© 2025 Association 42. - All rights reserved

13

Example:

$> python3 ft_achievement_tracker.py

=== Achievement Tracker System ===

Player alice achievements: {’first_kill’, ’level_10’,
’treasure_hunter’, ’speed_demon’}

Player bob achievements: {’first_kill’, ’level_10’, ’boss_slayer’,
’collector’}

Player charlie achievements: {’level_10’, ’treasure_hunter’,
’boss_slayer’, ’speed_demon’, ’perfectionist’}

=== Achievement Analytics ===

A1l unique achievements: {’boss_slayer’, ’collector’, ’first_kill’,
’level_10’, ’perfectionist’, ’speed_demon’, ‘treasure_hunter’}
Total unique achievements: 7

Common to all players: {’level_10’}
Rare achievements (1 player): {’collector’, ’perfectionist’}

Alice vs Bob common: {’first_kill’, ’level_10’}
Alice unique: {’speed_demon’, ‘treasure_hunter’}
Bob unique: {’boss_slayer’, ’collector’}

How do sets make data deduplication effortless? \What makes set operations
perfect for analytics?

(© 2025 Association 42. - All rights reserved

14

//

Chapter 9

Exercise 4: Inventory Master

l Exercise: 4

Directory: ex4/

ft _inventory system

Files to Submit: ft_inventory_system.py

Authorized: dict(), len(), print(), keys(), values(), items(),
get(), update()

Loot Time! Remember organizing your inventory in RPGs? Sorting potions, counting gold,
checking if you have that legendary sword? Time to build the ultimate inventory system!

Your Quest: Create an Inventory Master using dictionaries—your magical storage system
where you can instantly find any item by name!

What makes this awesome:
e Manage player inventories (like your personal treasure chest!)

e Track item details: quantities, types, values (is it worth keeping?)

Calculate total inventory value (how rich are you?)

Organize items by categories (weapons, potions, armor, etc.)

Generate cool inventory reports (show off your collection!)

Power-up tip: Dictionaries are like having a super-organized backpack where you can instantly
grab any item by saying its name. No more digging through everything to find that health potion!

(© 2025 Association 42. - All rights reserved

15

Example:

$> python3 ft_inventory_system.py
=== Player Inventory System ===

=== Alice’s Inventory ===
sword (weapon, rare): 1x @ 500 gold each = 500 gold
potion (consumable, common): 5x @ 50 gold each = 250 gold

shield (armor, uncommon): 1x @ 200 gold each = 200 gold

Inventory value: 950 gold
Item count: 7 items
Categories: weapon(l), consumable(5), armor (1)

=== Transaction: Alice gives Bob 2 potions ===
Transaction successful!

=== Updated Inventories
Alice potions: 3
Bob potions: 2

=== Inventory Analytics ===

Most valuable player: Alice (850 gold)
Most items: Alice (5 items)

Rarest items: sword, magic_ring

Why are dictionaries essential for game data? How do nested dictionaries
model complex relationships?

(© 2025 Association 42. - All rights reserved 16

//

Chapter 10

Exercise 5: Stream Wizard

l Exercise: 5

Directory: ex5/
Files to Submit: ft_data_stream.py

ft data stream

Authorized: yield, next(), iter(), range(), len(), print(), for
loops

Magic Time! Ever wondered how games handle millions of events without crashing? Welcome
to the world of generators—Python's memory-saving superpower!

Your Quest: Build a Stream Wizard that processes data like a pro! Think of generators as
magic spells that create data on-demand instead of storing everything at once.

What makes this magical:
e Create data streams that flow like a river (not a lake!)

Process events one by one using for-in loops (like reading a book page by page)

Filter interesting events (only the good stuff!)

Keep track of statistics without storing everything (memory magic!)

Show the difference between "store everything" vs "stream everything"

Power-up tip: Generators are like having a magical data fountain—they create exactly what
you need, when you need it, without wasting memory on stuff you don’t need yet!

(© 2025 Association 42. - All rights reserved

17

Example:

$> python3 ft_data_stream.py
=== Game Data Stream Processor ===

Processing 1000 game events...

Event 1: Player alice (level 5) killed monster

Event 2: Player bob (level 12) found treasure
Event 3: Player charlie (level 8) leveled up

=== Stream Analytics ===

Total events processed: 1000
High-level players (10+): 342
Treasure events: 89

Level-up events: 156

Memory usage: Constant (streaming)
Processing time: 0.045 seconds

=== Generator Demonstration ===
Fibonacci sequence (first 10): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34
Prime numbers (first 5): 2, 3, 5, 7, 11

How do generators enable memory-efficient processing? What makes for-in
loops perfect for streaming data?

(© 2025 Association 42. - All rights reserved 18

//

Chapter 11

Exercise 6: Data Alchemist

l Exercise: 6

Directory: ex6/
Files to Submit: ft_analytics_dashboard.py

ft _analytics dashboard

Authorized: List/dict/set comprehensions, len(), print(), sum(),
max(), min(), sorted()

Final Boss Time! You've mastered all the data structures—now it's time to combine them
into the ultimate analytics dashboard! This is where you become a true Data Alchemist!

Your Epic Quest: Build an analytics dashboard using comprehensions—Python's most elegant
way to transform data. Think of comprehensions as magic spells that turn raw data into pure
insights!

Core Requirements:
e Demonstrate list comprehensions for filtering and transforming data

Demonstrate dict comprehensions for creating mappings and grouping data

Demonstrate set comprehensions for finding unique values

Process sample gaming data (scores, players, achievements, etc.)

Show clear examples of each comprehension type in action

What to Focus On:
e List comprehensions: Filter high scores, transform data, create new lists
e Dict comprehensions: Group players by category, count occurrences, create mappings
e Set comprehensions: Find unique players, unique achievements, deduplicate data

e Combine comprehensions with the data structures from previous exercises

(© 2025 Association 42. - All rights reserved

19

42

e Keep it simple—focus on demonstrating comprehension mastery, not building complex
analytics

Power-up tip: Comprehensions are like having a magic wand—one elegant line of code can
transform entire datasets. It's the difference between writing 10 lines of loops vs 1 line of pure
Python magic!

Example Output (showing possible analytics - your implementation may vary):

Example:

$> python3 ft_analytics_dashboard.py
=== Game Analytics Dashboard ===

=== List Comprehension Examples ===

High scorers (>2000): [’alice’, ’charlie’, ’diana’]
Scores doubled: [4600, 3600, 4300, 4100]

Active players: [’alice’, ’bob’, ’charlie’]

=== Dict Comprehension Examples ===

Player scores: {’alice’: 2300, ’bob’: 1800, ’charlie’: 2150}
Score categories: {’high’: 3, ’medium’: 2, ’low’: 1}
Achievement counts: {’alice’: 5, ’bob’: 3, ’charlie’: 7}

=== Set Comprehension Examples ===
Unique players: {’alice’, ’bob’, ’charlie’, ’diana’}
Unique achievements: {’first_kill’, ’level_10’, ’boss_slayer’}

Active regions: {’north’, ’east’, ’central’}

=== Combined Analysis ===

Total players: 4

Total unique achievements: 12

Average score: 2062.5

Top performer: alice (2300 points, 5 achievements)

This exercise combines all the data structures and techniques you've learned.
Focus on demonstrating all three types of comprehensions clearly. The
example shows possibilities—your implementation should demonstrate com-
prehension mastery, not replicate the exact output.

(© 2025 Association 42. - All rights reserved

Keep it simple! The goal is to master comprehensions, not build a complex
analytics system. Use simple, hardcoded sample data (lists, dicts, sets) to

demonstrate each comprehension type. Don’t overcomplicate—clarity and
comprehension mastery are what matter!

How do comprehensions make complex data transformations readable?
What makes them essential for data engineering workflows?

(© 2025 Association 42. - All rights reserved

21

//

Chapter 12

Turn in and Submission

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don't hesitate to double check the names of your files to

ensure they are correct.

During evaluation, you may be asked to explain data structure choices,
demonstrate collection operations, or extend your analytics systems with
new functionality. Make sure you understand the principles behind each data
structure.

You need to return only the files requested by the subject of this project.
Focus on clean, well-documented code that clearly demonstrates mastery of
Python's collection types and data processing techniques.

(© 2025 Association 42. - All rights reserved

22

	Foreword
	AI Instructions
	Introduction
	Common Instructions
	General Rules
	Additional Guidelines
	Testing Resources

	Exercise 0: Command Quest
	Exercise 1: Score Cruncher
	Exercise 2: Position Tracker
	Exercise 3: Achievement Hunter
	Exercise 4: Inventory Master
	Exercise 5: Stream Wizard
	Exercise 6: Data Alchemist
	Turn in and Submission

