
Version: 1.0

Code Nexus
Polymorphic Data Streams in the Digital Matrix

Summary

Enter the Code Nexus as a Stream Engineer! Master method
overriding and subtype polymorphism while building advanced data
processing pipelines that adapt and evolve in real-time through the
digital matrix.

#Python #DataEngineering #Polymorphism

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Foreword 1

2 AI Instructions 2

3 Introduction 4

4 Engineering Guidelines 6
4.1 Nexus Standards . 6
4.2 Stream Engineering Principles . 7

5 Exercise 0: Data Processor Foundation 8

6 Exercise 1: Polymorphic Streams 11

7 Exercise 2: Nexus Integration 14

8 Turn in and Submission 18

Chapter 1

Foreword

Welcome to the Code Nexus, Stream Engineer!

The year is 2087. In the sprawling digital metropolis of Neo-Tokyo, data flows through quantum
fiber networks like neon-bright rivers of pure information. The Code Nexus stands as humanity’s
greatest achievement—a cybernetic cathedral where billions of data streams converge, trans-
form, and evolve in perfect harmony.

But the Nexus holds a secret that separates it from the crude data processors of the past: it
doesn’t just consume data—it understands it. Each data stream carries its own digital signa-
ture, its own behavioral patterns, its own electronic soul. Financial transactions pulse with the
rhythm of global markets. Sensor readings whisper the secrets of environmental change. Neural
network outputs sing with artificial consciousness.

How does a single system comprehend such diversity? Through the cybernetic principle of poly-
morphism—the art of creating digital chameleons that adapt their behavior while maintaining
their core identity. In the old world, engineers built rigid, specialized systems. The Nexus tran-
scends this limitation through method overriding, where the same processing node becomes a
shapeshifter, handling any data stream while honoring its unique nature.

As a Stream Engineer in the Nexus, you’ll master the forbidden knowledge of inheritance hier-
archies—digital bloodlines that pass traits from parent to child while allowing each generation
to evolve beyond its origins. You’ll learn that overriding a method isn’t just changing code—it’s
rewriting the genetic code of the digital organism itself.

The chrome towers of the Nexus await your expertise. Every data stream you engineer will be
a testament to polymorphic design—where unified interfaces dance with specialized behaviors,
creating systems that are both harmonious and infinitely adaptable.

Welcome to the future. Welcome to the Code Nexus.

© 2025 Association 42. - All rights reserved 1

Chapter 2

AI Instructions

● Context
During your learning journey, AI can assist with many different tasks. Take the time to explore
the various capabilities of AI tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it’s code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

● Main message
☛ Use AI to reduce repetitive or tedious tasks.

☛ Develop prompting skills — both coding and non-coding — that will benefit your future
career.

☛ Learn how AI systems work to better anticipate and avoid common risks, biases, and
ethical issues.

☛ Continue building both technical and power skills by working with your peers.

☛ Only use AI-generated content that you fully understand and can take responsibility for.

● Learner rules:
• You should take the time to explore AI tools and understand how they work, so you can

use them ethically and reduce potential biases.

• You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

• You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by AI.

• You should always seek peer review — don’t rely solely on your own validation.

© 2025 Association 42. - All rights reserved 2

● Phase outcomes:
• Develop both general-purpose and domain-specific prompting skills.

• Boost your productivity with effective use of AI tools.

• Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

● Comments and examples:
• You’ll regularly encounter situations — exams, evaluations, and more — where you must

demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

• Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

• AI tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

• Where AI tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

✓ Good practice:

I ask AI: “How do I test a sorting function?” It gives me a few ideas. I try them out and
review the results with a peer. We refine the approach together.

✗ Bad practice:

I ask AI to write a whole function, copy-paste it into my activity. During peer-evaluation, I
can’t explain what it does or why. I lose credibility — and I fail my activity.

✓ Good practice:

I use AI to help design a parser. Then I walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

✗ Bad practice:

I let Copilot generate my code for a key part of my activity. It compiles, but I can’t explain
how it handles pipes. During the evaluation, I fail to justify and I fail my activity.

© 2025 Association 42. - All rights reserved 3

Chapter 3

Introduction

NEXUS CLEARANCE LEVEL: STREAM ENGINEER INITIATE

The chrome spires of the Code Nexus pierce the neon-soaked sky of Neo-Tokyo, their quantum
processors humming with the collective consciousness of a trillion data streams. You stand at
the threshold of digital transcendence, ready to join the elite ranks of Stream Engineers who
keep the Nexus alive.

Your Neural Interface Activation Sequence:

• Phase Alpha: Data Processor Foundation - Forge your first neural pathways with
method overriding

• Phase Beta: Polymorphic Streams - Evolve adaptive data organisms through inheri-
tance

• Phase Gamma: Nexus Integration - Architect the ultimate multi-stream consciousness

Each phase rewrites your digital DNA, teaching you to think not in rigid code, but in living
interfaces and evolving implementations. By the final phase, you’ll understand the Nexus’s
deepest secret: how a single consciousness can process infinite data forms while maintaining
perfect digital harmony.

© 2025 Association 42. - All rights reserved 4

NEXUS CORE DIRECTIVE: This neural conditioning focuses on method
overriding and subtype polymorphism. Your digital organisms must demon-
strate how different classes share common neural pathways while expressing
unique behavioral patterns through inheritance.

STREAM ENGINEER PROTOCOL: All Nexus operatives must achieve
mastery of polymorphic design patterns. The digital matrix’s survival depends
on systems that evolve without fragmenting their core interfaces.

NEURAL DIAGNOSTIC SUITE: A main.py diagnostic program interfaces
directly with your implementations. This neural probe will only achieve syn-
chronization if you’ve properly architected all required digital organisms. Ex-
ecute python3 main.py to verify your polymorphic constructs are achieving
consciousness.

© 2025 Association 42. - All rights reserved 5

Chapter 4

Engineering Guidelines

4.1 Nexus Standards
• Your project must be written in Python 3.10 or later.

• Your project must adhere to the flake8 coding standard.

• All code must include comprehensive type annotations using the typing module.

• All classes must demonstrate proper inheritance relationships.

• Method overriding must be used purposefully to show specialized behavior.

• Exception handling should protect the data streams from corruption.

• Only standard library imports are authorized unless specified.

• Focus on demonstrating polymorphic behavior clearly in your implementations.

Required Type Annotations:
All code must include comprehensive type annotations using the typing module:

• Import required types: from typing import Any, List, Dict, Union, Optional

• Import ABC classes: from abc import ABC, abstractmethod

• All function parameters must have type annotations

• All function return types must be specified

• Class attributes should be typed where appropriate

Example: def process(self, data: Any) -> str:

© 2025 Association 42. - All rights reserved 6

4.2 Stream Engineering Principles
• Interface Consistency: Overridden methods must maintain the same signature as their

parent methods.

• Behavioral Specialization: Each subclass should provide meaningful, distinct behavior.

• Polymorphic Usage: Demonstrate that different objects can be used interchangeably
through common interfaces.

• Inheritance Hierarchy: Build logical class relationships that reflect real-world data pro-
cessing concepts.

The Code Nexus operates on a simple principle: same interface, different
behavior. When you call the same method on different objects, each should
respond in its own specialized way while maintaining interface compatibility.

© 2025 Association 42. - All rights reserved 7

Chapter 5

Exercise 0: Data Processor Foundation

Exercise: 0

stream_processor
Directory: ex0/
Files to Submit: stream_processor.py
Authorized: class, def, super(), print(), try/except

Engineering Brief: Welcome to the Code Nexus! Your first assignment is
to build the foundation of our data processing system. You’ll create the base
processor architecture and demonstrate how different data types can share
common processing interfaces while maintaining their unique characteristics.

Your Mission: Create a polymorphic data processing system that demonstrates method over-
riding. Build a base DataProcessor class and specialized processors for different data types.

System Architecture:

• Base Class: DataProcessor with common processing interface

• Specialized Classes: NumericProcessor(), TextProcessor(), LogProcessor() (no
parameters required)

• Key Methods: process(), validate(), format_output()

• Polymorphic Behavior: Same method calls, different specialized behaviors

© 2025 Association 42. - All rights reserved 8

Required Implementation:

• Create a DataProcessor base class with default implementations

• Override methods in subclasses to provide specialized behavior

• Demonstrate polymorphic usage by processing different data types through the same in-
terface

• Include proper error handling for invalid data

Focus on demonstrating how method overriding allows different processors
to handle their specific data types while maintaining a consistent interface.
This is the foundation of polymorphic design!

Example:

$> python3 stream_processor.py
=== CODE NEXUS - DATA PROCESSOR FOUNDATION ===

Initializing Numeric Processor...
Processing data: [1, 2, 3, 4, 5]
Validation: Numeric data verified
Output: Processed 5 numeric values, sum=15, avg=3.0

Initializing Text Processor...
Processing data: "Hello Nexus World"
Validation: Text data verified
Output: Processed text: 17 characters, 3 words

Initializing Log Processor...
Processing data: "ERROR: Connection timeout"
Validation: Log entry verified
Output: [ALERT] ERROR level detected: Connection timeout

=== Polymorphic Processing Demo ===
Processing multiple data types through same interface...
Result 1: Processed 3 numeric values, sum=6, avg=2.0
Result 2: Processed text: 12 characters, 2 words
Result 3: [INFO] INFO level detected: System ready

Foundation systems online. Nexus ready for advanced streams.

© 2025 Association 42. - All rights reserved 9

How does method overriding enable the same processing interface to handle
completely different data types? What makes this approach more powerful
than separate processing functions?

© 2025 Association 42. - All rights reserved 10

Chapter 6

Exercise 1: Polymorphic Streams

Exercise: 1

data_stream
Directory: ex1/
Files to Submit: data_stream.py
Authorized: class, def, super(), isinstance(), print(),

try/except, list comprehensions

Engineering Brief: Excellent foundation work! The Nexus Core is impressed
with your processor architecture. Now for the real challenge: building adap-
tive data streams that can handle multiple data types simultaneously while
maintaining processing efficiency and type safety.

Your Mission: Create a sophisticated data streaming system that demonstrates advanced poly-
morphic behavior. Build stream handlers that can process mixed data types while maintaining
type-specific optimizations.

Advanced Architecture:

• Stream Base: DataStream with core streaming functionality

• Specialized Streams: SensorStream(stream_id), TransactionStream(stream_id),
EventStream(stream_id)

• Stream Manager: StreamProcessor that handles multiple stream types polymorphically

• Advanced Features: Batch processing, filtering, transformation pipelines

© 2025 Association 42. - All rights reserved 11

Required Implementation:

• Create a DataStream base class with streaming interface methods

• Implement specialized stream classes with overridden behavior for different data domains

• Build a StreamProcessor that can handle any stream type through polymorphism

• Demonstrate batch processing of mixed stream types

• Include stream filtering and transformation capabilities

• Add comprehensive error handling for stream processing failures

This exercise demonstrates subtype polymorphism in action. Your
StreamProcessor should be able to handle any DataStream subtype without
knowing the specific implementation details. This is the power of polymorphic
design!

© 2025 Association 42. - All rights reserved 12

Example:

$> python3 data_stream.py
=== CODE NEXUS - POLYMORPHIC STREAM SYSTEM ===

Initializing Sensor Stream...
Stream ID: SENSOR_001, Type: Environmental Data
Processing sensor batch: [temp:22.5, humidity:65, pressure:1013]
Sensor analysis: 3 readings processed, avg temp: 22.5°C

Initializing Transaction Stream...
Stream ID: TRANS_001, Type: Financial Data
Processing transaction batch: [buy:100, sell:150, buy:75]
Transaction analysis: 3 operations, net flow: +25 units

Initializing Event Stream...
Stream ID: EVENT_001, Type: System Events
Processing event batch: [login, error, logout]
Event analysis: 3 events, 1 error detected

=== Polymorphic Stream Processing ===
Processing mixed stream types through unified interface...

Batch 1 Results:
- Sensor data: 2 readings processed
- Transaction data: 4 operations processed
- Event data: 3 events processed

Stream filtering active: High-priority data only
Filtered results: 2 critical sensor alerts, 1 large transaction

All streams processed successfully. Nexus throughput optimal.

How does polymorphism allow the StreamProcessor to handle different
stream types without knowing their specific implementations? What are
the benefits of this design approach?

© 2025 Association 42. - All rights reserved 13

Chapter 7

Exercise 2: Nexus Integration

Exercise: 2

nexus_pipeline
Directory: ex2/
Files to Submit: nexus_pipeline.py
Authorized: class, def, super(), isinstance(), print(),

try/except, list/dict comprehensions, collections

Engineering Brief: Outstanding stream engineering! The Nexus Core has
approved your promotion to Senior Stream Engineer. Your final challenge:
integrate everything into a complete data processing pipeline that demon-
strates mastery of polymorphic architecture at enterprise scale.

Your Mission: Build the complete Code Nexus data processing pipeline—a sophisticated system
that combines multiple processing stages, handles complex data transformations, and demon-
strates advanced polymorphic patterns used in real-world data engineering.

Enterprise Architecture:

• Pipeline Base: ProcessingPipeline with configurable stages

• Processing Stages: InputStage(), TransformStage(), OutputStage() (no parame-
ters required)

• Data Adapters: JSONAdapter(pipeline_id), CSVAdapter(pipeline_id),
StreamAdapter(pipeline_id)

• Pipeline Manager: NexusManager orchestrating multiple pipelines

• Advanced Features: Pipeline chaining, error recovery, performance monitoring

© 2025 Association 42. - All rights reserved 14

Required Implementation:

• Create a flexible ProcessingPipeline base class with configurable processing stages

• Implement specialized pipeline stages that override base behavior for different processing
needs

• Build data adapters that demonstrate polymorphic data format handling

• Create a NexusManager that orchestrates multiple pipelines polymorphically

• Demonstrate pipeline chaining where output from one pipeline feeds into another

• Include comprehensive error handling and recovery mechanisms

• Add performance monitoring and pipeline statistics

This is your masterpiece! Demonstrate how method overriding and subtype
polymorphism enable building complex, maintainable systems. Your pipeline
should handle any data type or processing requirement through polymorphic
interfaces.

© 2025 Association 42. - All rights reserved 15

Example:

$> python3 nexus_pipeline.py
=== CODE NEXUS - ENTERPRISE PIPELINE SYSTEM ===

Initializing Nexus Manager...
Pipeline capacity: 1000 streams/second

Creating Data Processing Pipeline...
Stage 1: Input validation and parsing
Stage 2: Data transformation and enrichment
Stage 3: Output formatting and delivery

=== Multi-Format Data Processing ===

Processing JSON data through pipeline...
Input: {"sensor": "temp", "value": 23.5, "unit": "C"}
Transform: Enriched with metadata and validation
Output: Processed temperature reading: 23.5°C (Normal range)

Processing CSV data through same pipeline...
Input: "user,action,timestamp"
Transform: Parsed and structured data
Output: User activity logged: 1 actions processed

Processing Stream data through same pipeline...
Input: Real-time sensor stream
Transform: Aggregated and filtered
Output: Stream summary: 5 readings, avg: 22.1°C

=== Pipeline Chaining Demo ===
Pipeline A → Pipeline B → Pipeline C
Data flow: Raw → Processed → Analyzed → Stored

Chain result: 100 records processed through 3-stage pipeline
Performance: 95% efficiency, 0.2s total processing time

=== Error Recovery Test ===
Simulating pipeline failure...
Error detected in Stage 2: Invalid data format
Recovery initiated: Switching to backup processor
Recovery successful: Pipeline restored, processing resumed

Nexus Integration complete. All systems operational.

© 2025 Association 42. - All rights reserved 16

How does the combination of method overriding and subtype polymorphism
enable building scalable, maintainable data processing systems? What real-
world engineering problems does this approach solve?

© 2025 Association 42. - All rights reserved 17

Chapter 8

Turn in and Submission

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don’t hesitate to double check the names of your files to
ensure they are correct.

During evaluation, you may be asked to explain polymorphic behavior, demon-
strate method overriding, extend your systems with new data types, or modify
processing behavior. Make sure you understand how inheritance enables code
reuse while allowing behavioral specialization.

You need to return only the files requested by the subject of this project.
Focus on clean, well-documented code that clearly demonstrates mastery of
method overriding and subtype polymorphism principles.

© 2025 Association 42. - All rights reserved 18

	Foreword
	AI Instructions
	Introduction
	Engineering Guidelines
	Nexus Standards
	Stream Engineering Principles

	Exercise 0: Data Processor Foundation
	Exercise 1: Polymorphic Streams
	Exercise 2: Nexus Integration
	Turn in and Submission

