
Version: 1.1

Libft
Your very first own library

Summary

This activity is about coding a C library.
It will contain a lot of general purpose functions your programs will

rely upon.

#C #Imperative #Library

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Introduction 1

2 Common Instructions 2

3 AI Instructions 3

4 Mandatory part 5
4.1 Technical considerations . 5
4.2 Part 1 - Libc functions . 6
4.3 Part 2 - Additional functions . 8
4.4 Part 3 - Linked list . 12

5 Readme Requirements 15

6 Submission and peer-evaluation 16

Chapter 1

Introduction

C programming can be quite tedious without access to the highly useful standard functions. This
project aims to help you understand how these functions work by implementing them yourself
and learning to use them effectively. You will create your own library, which will be valuable for
your future C school assignments.

© 2025 Association 42. - All rights reserved 1

Chapter 2

Common Instructions

• Your activity must be written in C.

• Your activity must be written in accordance with the Norm. If you have bonus files or
functions, they are included in the norm check, and you will receive a 0 if there is a norm
error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double free,
etc.) except for undefined behaviors. If this happens, your activity will be considered
non-functional and will receive a 0 during the review.

• All heap-allocated memory space must be properly freed when necessary. No memory leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile that will compile your source files
to the required output with the flags -Wall, -Wextra, and -Werror, using cc, and your
Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean, and re.

• If your activity allows you to use your libft, you must copy its sources and its associated
Makefile into a libft folder. Your activity’s Makefile must compile the library by using
its Makefile, then compile the activity.

• We encourage you to create test programs for your activity, even though this work will
not be submitted and will not be graded. It will give you a chance to easily test your
work and your peers’ work. You will find these tests especially useful during your defense.
Indeed, during the defense, you are free to use your tests and/or the tests of the peer you
are evaluating.

• Submit your work to your assigned Git repository. Only the work in the Git repository will
be graded. If Deepthought is assigned to grade your work, it will be done after your peer
evaluations. If an error occurs in any section of your work during Deepthought’s grading,
the review will stop.

© 2025 Association 42. - All rights reserved 2

Chapter 3

AI Instructions

● Context
This activity is designed to help you discover the fundamental building blocks of your 42 training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach to
using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, repetition,
and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the 42 train-
ing, and as an expectation in the job market — please refer to the dedicated FAQ on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices and
countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

© 2025 Association 42. - All rights reserved 3

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your activities. But you’re here to learn,

not to prove that AI has learned. Don’t waste your time (or ours) just to demonstrate
that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability to
find one. AI gives you the answer directly, but that prevents you from building your own
reasoning. And reasoning takes time, effort, and involves failure. The path to success is
not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones, etc.
You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your interpersonal
skills and your ability to think divergently. That’s far more valuable than just chatting with
a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic in itself.
You’ll even have the chance to build your own AI software. In order to learn more about
our crescendo approach you’ll go through in the documentation available on the intranet.

✓ Good practice:

I’m stuck on a new concept. I ask someone nearby how they approached it. We talk for 10
minutes — and suddenly it clicks. I get it.

✗ Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t explain
anything. I fail. During the exam — no AI — I’m stuck again. I fail.

© 2025 Association 42. - All rights reserved 4

Chapter 4

Mandatory part

Program Name libft.a
Files to Submit Makefile, libft.h, ft_*.c
Makefile NAME, all, clean, fclean, re
External Functions Detailed below
Libft authorized n/a
Description Write your own library: a collection of functions

that will be a useful tool for your curriculum.

4.1 Technical considerations
• Declaring global variables is forbidden.

• If you need helper functions to split a more complex function, define them as static
functions. This way, their scope will be limited to the appropriate file.

• Place all your files at the root of your repository.

• Turning in unused files is forbidden.

• Every .c files must compile with the flags -Wall -Wextra -Werror.

• You must use the command ar to create your library. Using the libtool command is
forbidden.

• Your libft.a has to be created at the root of your repository.

© 2025 Association 42. - All rights reserved 5

4.2 Part 1 - Libc functions
To begin, you must redo a set of functions from the libc. Your functions will have the same
prototypes and implement the same behaviors as the originals. They must comply with the way
they are defined in their man pages. The only difference will be their names. They will begin
with the ’ft_’ prefix. For instance, strlen becomes ft_strlen.

Some of the functions’ prototypes you have to redo use the ’restrict’
qualifier. This keyword is part of the c99 standard. It is therefore forbidden
to include it in your own prototypes and to compile your code with the
-std=c99 flag.

You must write your own function implementing the following original ones. They do not
require any external functions:

For the character classification functions (isalpha, isdigit, isalnum,
isascii, isprint), the return value must be:

• 1 if the character matches the tested class

• 0 if the character does not match

• isalpha

• isdigit

• isalnum

• isascii

• isprint

• strlen

• memset

• bzero

• memcpy

• memmove

• strlcpy

• strlcat

• toupper

• tolower

• strchr

• strrchr

• strncmp

• memchr

• memcmp

• strnstr

• atoi

In order to implement the two following functions, you will use malloc():

• calloc

• strdup

© 2025 Association 42. - All rights reserved 6

Depending on your current operating system, the calloc man page and the
function’s behavior may differ. The following instruction supersedes what
you can find in the man page: If nmemb or size is 0, then calloc() returns a
unique pointer value that can later be successfully passed to free().

Some functions that you must reimplement, such as strlcpy, strlcat, and
bzero, are not included by default in the GNU C Library (glibc).
To test them against the system standard, you may need to include
<bsd/string.h> and compile with the -lbsd flag.
This behaviour is specific to glibc systems. If you are curious, take the
opportunity to explore the differences between glibc and BSD libc.

© 2025 Association 42. - All rights reserved 7

4.3 Part 2 - Additional functions
In this second part, you must develop a set of functions that are either not in the libc, or that
are part of it but in a different form.

Some of the functions from part 1 can be useful for implementing the func-
tions below.

Function Name ft_substr
Prototype char *ft_substr(char const *s, unsigned int start,

size_t len);
Files to Submit -
Parameters s: The string from which to create the substring.

start: The start index of the substring in the string
’s’.
len: The maximum length of the substring.

Return Value The substring.
NULL if the allocation fails.

External Functions malloc
Description Allocates (with malloc(3)) and returns a substring

from the string ’s’.
The substring begins at index ’start’ and is of
maximum size ’len’.

Function Name ft_strjoin
Prototype char *ft_strjoin(char const *s1, char const *s2);
Files to Submit -
Parameters s1: The prefix string.

s2: The suffix string.
Return Value The new string.

NULL if the allocation fails.
External Functions malloc
Description Allocates (with malloc(3)) and returns a new string,

which is the result of the concatenation of ’s1’ and
’s2’.

© 2025 Association 42. - All rights reserved 8

Function Name ft_strtrim
Prototype char *ft_strtrim(char const *s1, char const *set);
Files to Submit -
Parameters s1: The string to be trimmed.

set: The reference set of characters to trim.
Return Value The trimmed string.

NULL if the allocation fails.
External Functions malloc
Description Allocates (with malloc(3)) and returns a copy of ’s1’

with the characters specified in ’set’ removed from
the beginning and the end of the string.

Function Name ft_split
Prototype char **ft_split(char const *s, char c);
Files to Submit -
Parameters s: The string to be split.

c: The delimiter character.
Return Value The array of new strings resulting from the split.

NULL if the allocation fails.
External Functions malloc, free
Description Allocates (with malloc(3)) and returns an array of

strings obtained by splitting ’s’ using the character
’c’ as a delimiter. The array must end with a NULL
pointer.

Function Name ft_itoa
Prototype char *ft_itoa(int n);
Files to Submit -
Parameters n: the integer to convert.
Return Value The string representing the integer.

NULL if the allocation fails.
External Functions malloc
Description Allocates (with malloc(3)) and returns a string

representing the integer received as an argument.
Negative numbers must be handled.

© 2025 Association 42. - All rights reserved 9

Function Name ft_strmapi
Prototype char *ft_strmapi(char const *s, char (*f)(unsigned

int, char));
Files to Submit -
Parameters s: The string on which to iterate.

f: The function to apply to each character.
Return Value The string created from the successive applications of

’f’.
Returns NULL if the allocation fails.

External Functions malloc
Description Applies the function ’f’ to each character of the

string ’s’, passing its index as the first argument
and the character itself as the second. A new string
is created (using malloc(3)) to collect the results
from the successive applications of ’f’.

Function Name ft_striteri
Prototype void ft_striteri(char *s, void (*f)(unsigned int,

char*));
Files to Submit -
Parameters s: The string on which to iterate.

f: The function to apply to each character.
Return Value None
External Functions None
Description Applies the function ’f’ on each character of the

string passed as argument, passing its index as first
argument. Each character is passed by address to ’f’
to be modified if necessary.

Function Name ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Files to Submit -
Parameters c: The character to output.

fd: The file descriptor on which to write.
Return Value None
External Functions write
Description Outputs the character ’c’ to the given file

descriptor.

© 2025 Association 42. - All rights reserved 10

Function Name ft_putstr_fd
Prototype void ft_putstr_fd(char *s, int fd);
Files to Submit -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return Value None
External Functions write
Description Outputs the string ’s’ to the given file descriptor.

Function Name ft_putendl_fd
Prototype void ft_putendl_fd(char *s, int fd);
Files to Submit -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return Value None
External Functions write
Description Outputs the string ’s’ to the given file descriptor

followed by a newline.

Function Name ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Files to Submit -
Parameters n: The integer to output.

fd: The file descriptor on which to write.
Return Value None
External Functions write
Description Outputs the integer ’n’ to the given file descriptor.

© 2025 Association 42. - All rights reserved 11

4.4 Part 3 - Linked list
In the third part, you will have to implement functions using a structure in order to manipulate
linked lists.

To do so, here is the structure declaration that you should add to your libft.h file:

ft_list.h

typedef struct s_list
{

void *content;
struct s_list *next;

} t_list;

The members of the t_list struct are:

• content: The data contained in the node.
Using void * allows you to store any type of data.

• next: The address of the next node, or NULL if the next node is the last one.

Implement the following functions in order to easily use your lists.

Function Name ft_lstnew
Prototype t_list *ft_lstnew(void *content);
Files to Submit -
Parameters content: The content to store in the new node.
Return Value A pointer to the new node
External Functions malloc
Description Allocates memory (using malloc(3)) and returns a new

node. The ’content’ member variable is initialized
with the given parameter ’content’. The variable
’next’ is initialized to NULL.

Function Name ft_lstadd_front
Prototype void ft_lstadd_front(t_list **lst, t_list *new);
Files to Submit -
Parameters lst: The address of a pointer to the first node of a

list.
new: The address of a pointer to the node to be
added.

Return Value None
External Functions None
Description Adds the node ’new’ at the beginning of the list.

© 2025 Association 42. - All rights reserved 12

Function Name ft_lstsize
Prototype int ft_lstsize(t_list *lst);
Files to Submit -
Parameters lst: The beginning of the list.
Return Value The length of the list
External Functions None
Description Counts the number of nodes in the list.

Function Name ft_lstlast
Prototype t_list *ft_lstlast(t_list *lst);
Files to Submit -
Parameters lst: The beginning of the list.
Return Value Last node of the list
External Functions None
Description Returns the last node of the list.

Function Name ft_lstadd_back
Prototype void ft_lstadd_back(t_list **lst, t_list *new);
Files to Submit -
Parameters lst: The address of a pointer to the first node of a

list.
new: The address of a pointer to the node to be
added.

Return Value None
External Functions None
Description Adds the node ’new’ at the end of the list.

Function Name ft_lstdelone
Prototype void ft_lstdelone(t_list *lst, void (*del)(void *));
Files to Submit -
Parameters lst: The node to free.

del: The address of the function used to delete the
content.

Return Value None
External Functions free
Description Takes a node as parameter and frees its content using

the function ’del’. Frees the node itself but does
NOT free the next node.

© 2025 Association 42. - All rights reserved 13

Function Name ft_lstclear
Prototype void ft_lstclear(t_list **lst, void (*del)(void *));
Files to Submit -
Parameters lst: The address of a pointer to a node.

del: The address of the function used to delete the
content of the node.

Return Value None
External Functions free
Description Deletes and frees the given node and all its

successors, using the function ’del’ and free(3).
Finally, set the pointer to the list to NULL.

Function Name ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(void *));
Files to Submit -
Parameters lst: The address of a pointer to a node.

f: The address of the function to apply to each
node’s content.

Return Value None
External Functions None
Description Iterates through the list ’lst’ and applies the

function ’f’ to the content of each node.

Function Name ft_lstmap
Prototype t_list *ft_lstmap(t_list *lst, void *(*f)(void *),

void (*del)(void *));
Files to Submit -
Parameters lst: The address of a pointer to a node.

f: The address of the function applied to each node’s
content.
del: The address of the function used to delete a
node’s content if needed.

Return Value The new list.
NULL if the allocation fails.

External Functions malloc, free
Description Iterates through the list ’lst’, applies the function

’f’ to each node’s content, and creates a new list
resulting of the successive applications of the
function ’f’. The ’del’ function is used to delete
the content of a node if needed.

© 2025 Association 42. - All rights reserved 14

Chapter 5

Readme Requirements

A README.md file must be provided at the root of your Git repository. Its purpose is to allow
anyone unfamiliar with the activity (peers, staff, recruiters, etc.) to quickly understand what
the activity is about, how to run it, and where to find more information on the topic.
The README.md must include at least:

• The very first line must be italicized and read: This activity has been created as part of
the 42 curriculum by <login1>[, <login2>[, <login3>[...]]].

• A "Description" section that clearly presents the activity, including its goal and a brief
overview.

• An "Instructions" section containing any relevant information about compilation, instal-
lation, and/or execution.

• A "Resources" section listing classic references related to the topic (documentation,
articles, tutorials, etc.), as well as a description of how AI was used — specifying for
which tasks and which parts of the activity.

➠ Additional sections may be required depending on the activity (e.g., usage examples,
feature list, technical choices, etc.).

Any required additions will be explicitly listed below.

• A detailed description of the library created for this project must also be included.

English is recommended; alternatively, you may use the main language of
your campus.

© 2025 Association 42. - All rights reserved 15

Chapter 6

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the peer-evaluation. Don’t hesitate to double check the names of your
files to ensure they are correct.

Place all your files at the root of your repository.

During the review, a brief modification of the activity may occasionally be requested. This
could involve a minor behavior change, a few lines of code to write or rewrite, or an easy-to-add
feature.

While this step may not be applicable to every activity, you must be prepared for it if it is
mentioned in the review guidelines.

This step is meant to verify your actual understanding of a specific part of the activity. The
modification can be performed in any development environment you choose (e.g., your usual
setup), and it should be feasible within a few minutes — unless a specific timeframe is defined
as part of the review.
You can, for example, be asked to make a small update to a function or script, modify a display,
or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the review guidelines and may vary from
one review to another for the same activity.

© 2025 Association 42. - All rights reserved 16

	Introduction
	Common Instructions
	AI Instructions
	Mandatory part
	Technical considerations
	Part 1 - Libc functions
	Part 2 - Additional functions
	Part 3 - Linked list

	Readme Requirements
	Submission and peer-evaluation

