
Version: 1.0

Garden Guardian
Data Engineering for Smart Agriculture

Summary

Build resilient data pipelines for your smart garden! Learn to handle
sensor failures, process agricultural data streams, and create robust
monitoring systems that keep your digital greenhouse thriving.

#Python #DataEngineering #SmartAgriculture



Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr



Contents

1 Foreword 1

2 Introduction 2

3 General Instructions 3

4 Exercise 0: Agricultural Data Validation Pipeline 4

5 Exercise 1: Different Types of Problems 6

6 Exercise 2: Making Your Own Error Types 8

7 Exercise 3: Finally Block - Always Clean Up 10

8 Exercise 4: Raising Your Own Errors 12

9 Exercise 5: Garden Management System 14

10 Turn in and Submission 16



Chapter 1

Foreword

Welcome to the world of agricultural data engineering!

Building on your Python foundations (Activity 00) and garden monitoring classes (Activity 01),
you’re now ready to tackle the real challenges of smart agriculture. In modern farming, data
flows like water through irrigation systems—sensor readings stream in continuously, weather
APIs provide forecasts, and IoT devices monitor everything from soil pH to greenhouse humidity.

But what happens when this data pipeline encounters turbulence? When sensors malfunction
during harvest season? When network connections drop during critical monitoring periods?
When corrupted data threatens to trigger false irrigation cycles?

Professional agricultural data engineers know that robust systems aren’t built to avoid fail-
ures—they’re designed to gracefully handle the unexpected. Your digital greenhouse needs
to be as resilient as nature itself.

Python’s exception handling system is your toolkit for building bulletproof agricultural data
pipelines. You’ll learn to catch sensor anomalies, create custom agricultural alerts, and en-
sure data integrity even when Mother Nature (or Murphy’s Law) strikes.

In this project, you’ll evolve from a basic programmer to an agricultural data engineer, building
monitoring systems that keep growing even when the unexpected happens.

© 2025 Association 42. - All rights reserved 1



Chapter 2

Introduction

Welcome to Garden Guardian: Data Engineering for Smart Agriculture!
Building on your garden monitoring foundation from previous projects, you’ll now master the

critical skills of resilient data pipeline engineering for agricultural systems.
You’ll discover:

• How to validate and clean agricultural data streams in real-time

• What different failure modes exist in IoT sensor networks

• How to create custom agricultural alerts for crop-specific monitoring

• Essential techniques for data pipeline fault tolerance and recovery

• How to ensure data integrity in distributed farming systems

Each exercise builds a component of your smart agriculture data platform, progressing from
basic sensor validation to comprehensive agricultural monitoring systems.

IMPORTANT: This project focuses on agricultural data engineering. Your
programs should demonstrate how to build robust data pipelines that handle
real-world farming scenarios gracefully.

© 2025 Association 42. - All rights reserved 2



Chapter 3

General Instructions

• Your programs must be written in Python 3.10+

• Your code must respect the flake8 linter standards

• Each exercise must be in its own file

• Include simple docstrings for functions and classes

• Focus on demonstrating basic error handling concepts clearly

• Show both normal operations and error scenarios

• Use built-in exceptions appropriately

• Keep solutions simple and focused on learning

Data Engineering Note: This project teaches resilient data pipeline de-
sign for agricultural systems. Your code should demonstrate how to build
fault-tolerant monitoring systems that maintain data integrity under real-
world conditions.

© 2025 Association 42. - All rights reserved 3



Chapter 4

Exercise 0: Agricultural Data Validation
Pipeline

Exercise: 0

ft_first_exception
Directory: ex0/
Files to Submit: ft_first_exception.py
Authorized: try, except, int(), print()

Your smart agriculture data pipeline receives temperature readings from field sensors. Some-
times sensors transmit corrupted data or farmers input invalid values through mobile apps. Your
data validation layer must filter out bad data before it corrupts your agricultural analytics.

Write a function check_temperature(temp_str) that:

• Takes a string input from the user

• Tries to convert it to a number

• Checks if the temperature is reasonable for plants (0 to 40 degrees)

• Returns the temperature if it’s valid

• Handles the case when the input isn’t a number

• Handles the case when the temperature is too high or too low

Create a test_temperature_input() function that demonstrates:

• Testing with good input ("25")

• Testing with bad input ("abc")

• Testing with extreme values ("100", "-50")

• Showing how your program keeps running despite errors

© 2025 Association 42. - All rights reserved 4



Example:

python3 ft_first_exception.py
=== Garden Temperature Checker ===

Testing temperature: 25
Temperature 25°C is perfect for plants!

Testing temperature: abc
Error: ’abc’ is not a valid number

Testing temperature: 100
Error: 100°C is too hot for plants (max 40°C)

Testing temperature: -50
Error: -50°C is too cold for plants (min 0°C)

All tests completed - program didn’t crash!

What happens when your program tries to convert "abc" to a number? How
can you catch this error and handle it gracefully?

© 2025 Association 42. - All rights reserved 5



Chapter 5

Exercise 1: Different Types of Problems

Exercise: 1

ft_different_errors
Directory: ex1/
Files to Submit: ft_different_errors.py
Authorized: try, except, ValueError, ZeroDivisionError,

FileNotFoundError, KeyError, print(), open(), close()

Your garden program might encounter different types of problems. Python has different
types of errors for different situations, and you can catch them separately or together.

Write a function garden_operations() that demonstrates these common errors:

• ValueError - when someone gives bad data (like "abc" instead of a number)

• ZeroDivisionError - when you try to divide by zero

• FileNotFoundError - when you try to open a file that doesn’t exist

• KeyError - when you look for something that isn’t in a dictionary

Create a test_error_types() function that:

• Shows each type of error happening

• Catches each error and explains what went wrong

• Demonstrates that your program continues running after each error

• Shows how to catch multiple error types with one except block

© 2025 Association 42. - All rights reserved 6



Example:

python3 ft_different_errors.py
=== Garden Error Types Demo ===

Testing ValueError...
Caught ValueError: invalid literal for int()

Testing ZeroDivisionError...
Caught ZeroDivisionError: division by zero

Testing FileNotFoundError...
Caught FileNotFoundError: No such file ’missing.txt’

Testing KeyError...
Caught KeyError: ’missing_plant’

Testing multiple errors together...
Caught an error, but program continues!

All error types tested successfully!

Why does Python have different types of errors? How can you catch multiple
types of errors with one piece of code?

© 2025 Association 42. - All rights reserved 7



Chapter 6

Exercise 2: Making Your Own Error Types

Exercise: 2

ft_custom_errors
Directory: ex2/
Files to Submit: ft_custom_errors.py
Authorized: class, Exception, try, except, raise, print()

Sometimes the built-in Python errors aren’t specific enough for your garden program. You
can create your own error types to make your code clearer and more helpful.

Create these simple custom exception classes:

• GardenError - A basic error for garden problems

• PlantError - For problems with plants (inherits from GardenError)

• WaterError - For problems with watering (inherits from GardenError)

Each custom exception should:

• Be a simple class that inherits from Exception (or GardenError)

• Have a helpful error message

• Be easy to catch and handle

Create functions that:

• Raise your custom errors in different situations

• Show how to catch your specific error types

• Demonstrate that catching GardenError catches all garden-related errors

© 2025 Association 42. - All rights reserved 8



Example:

python3 ft_custom_errors.py
=== Custom Garden Errors Demo ===

Testing PlantError...
Caught PlantError: The tomato plant is wilting!

Testing WaterError...
Caught WaterError: Not enough water in the tank!

Testing catching all garden errors...
Caught a garden error: The tomato plant is wilting!
Caught a garden error: Not enough water in the tank!

All custom error types work correctly!

When should you create your own error types instead of using Python’s built-
in ones? How does inheritance help organize different types of errors?

© 2025 Association 42. - All rights reserved 9



Chapter 7

Exercise 3: Finally Block - Always Clean
Up

Exercise: 3

ft_finally_block
Directory: ex3/
Files to Submit: ft_finally_block.py
Authorized: try, except, finally, print()

Sometimes your garden program needs to clean up after itself, even if an error happens. The
finally block is perfect for this - it always runs, whether there was an error or not.

Write a function water_plants(plant_list) that:

• Opens a "watering system" (just print a message)

• Goes through each plant in the list

• Waters each plant (print a message)

• Always closes the watering system in a finally block

• Handles errors if a plant name is invalid

Create a test_watering_system() function that demonstrates:

• Normal watering with a good plant list

• Watering with a bad plant list (causes an error)

• Shows that cleanup always happens, even when there’s an error

• Uses try/except/finally structure

© 2025 Association 42. - All rights reserved 10



Example:

python3 ft_finally_block.py
=== Garden Watering System ===

Testing normal watering...
Opening watering system
Watering tomato
Watering lettuce
Watering carrots
Closing watering system (cleanup)
Watering completed successfully!

Testing with error...
Opening watering system
Watering tomato
Error: Cannot water None - invalid plant!
Closing watering system (cleanup)

Cleanup always happens, even with errors!

Why is it important to clean up resources even when errors happen? How
does the finally block help ensure cleanup always occurs?

© 2025 Association 42. - All rights reserved 11



Chapter 8

Exercise 4: Raising Your Own Errors

Exercise: 4

ft_raise_errors
Directory: ex4/
Files to Submit: ft_raise_errors.py
Authorized: try, except, raise, ValueError, print()

Sometimes your garden program needs to create its own errors when it detects a problem.
You can use the raise keyword to signal that something is wrong.

Write a function check_plant_health(plant_name, water_level, sunlight_hours)
that:

• Checks if the plant name is valid (not empty)

• Checks if water level is reasonable (between 1 and 10)

• Checks if sunlight hours are reasonable (between 2 and 12)

• Raises appropriate errors with helpful messages when something is wrong

• Returns a success message if everything is okay

Create a test_plant_checks() function that demonstrates:

• Testing with good values (should work fine)

• Testing with bad plant name (should raise ValueError)

• Testing with bad water level (should raise ValueError)

• Testing with bad sunlight hours (should raise ValueError)

• Catching and handling each error appropriately

© 2025 Association 42. - All rights reserved 12



Example:

python3 ft_raise_errors.py
=== Garden Plant Health Checker ===

Testing good values...
Plant ’tomato’ is healthy!

Testing empty plant name...
Error: Plant name cannot be empty!

Testing bad water level...
Error: Water level 15 is too high (max 10)

Testing bad sunlight hours...
Error: Sunlight hours 0 is too low (min 2)

All error raising tests completed!

When should your program raise its own errors? How do you create helpful
error messages that tell users exactly what went wrong?

© 2025 Association 42. - All rights reserved 13



Chapter 9

Exercise 5: Garden Management System

Exercise: 5

ft_garden_management
Directory: ex5/
Files to Submit: ft_garden_management.py
Authorized: class, Exception, try, except, finally, raise,

print()

Now put everything together! Create a simple garden management system that uses all the
error handling techniques you’ve learned.

Create a GardenManager class that:

• Has methods to add plants, water plants, and check plant health

• Uses your custom error types from previous exercises

• Handles different types of errors appropriately

• Uses try/except/finally blocks where needed

• Raises its own errors when something is wrong

• Keeps working even when some operations fail

Your garden manager should:

• Handle bad input gracefully

• Use custom exceptions for garden-specific problems

• Always clean up resources (use finally blocks)

• Provide helpful error messages to users

• Demonstrate all the error handling concepts from this project

© 2025 Association 42. - All rights reserved 14



Example:

python3 ft_garden_management.py
=== Garden Management System ===

Adding plants to garden...
Added tomato successfully
Added lettuce successfully
Error adding plant: Plant name cannot be empty!

Watering plants...
Opening watering system
Watering tomato - success
Watering lettuce - success
Closing watering system (cleanup)

Checking plant health...
tomato: healthy (water: 5, sun: 8)
Error checking lettuce: Water level 15 is too high (max 10)

Testing error recovery...
Caught GardenError: Not enough water in tank
System recovered and continuing...

Garden management system test complete!

This exercise combines all the error handling concepts from the project. You’ll
be evaluated on how well you use try/except blocks, custom exceptions,
finally blocks, and error raising together.

How do all these error handling techniques work together to make a robust
garden program? What makes a program reliable when things go wrong?

© 2025 Association 42. - All rights reserved 15



Chapter 10

Turn in and Submission

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don’t hesitate to double check the names of your files to
ensure they are correct.

During evaluation, you may be asked to explain error handling concepts,
demonstrate how exceptions work in your garden programs, or show how
your system handles different types of problems. Make sure you understand
the principles behind your code.

You need to return only the files requested by the subject of this project.
Focus on clean, readable code that clearly demonstrates error handling and
defensive programming concepts.

© 2025 Association 42. - All rights reserved 16


	Foreword
	Introduction
	General Instructions
	Exercise 0: Agricultural Data Validation Pipeline
	Exercise 1: Different Types of Problems
	Exercise 2: Making Your Own Error Types
	Exercise 3: Finally Block - Always Clean Up
	Exercise 4: Raising Your Own Errors
	Exercise 5: Garden Management System
	Turn in and Submission

