
Version: 1.0

Growing Code
Python Fundamentals Through Garden Data

Summary

Discover Python’s fundamental syntax and semantics through
analyzing community garden data. Learn expressions, variables,
functions, and control flow while contributing to sustainable
community initiatives.

#Python #DataEngineering #Fundamentals



Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr



Contents

1 Foreword 1

2 AI Instructions 2

3 Introduction 4

4 General Instructions 5

5 Exercise 0: Hello Garden 6

6 Exercise 1: Garden Plot Area 7

7 Exercise 2: Harvest Total 8

8 Exercise 3: Plant Age Check 9

9 Exercise 4: Water Reminder 10

10 Exercise 5: Count to Harvest 11

11 Exercise 6: Garden Summary 13

12 Exercise 7: Seed Inventory with Type Annotations 14

13 Helper Resources 16

14 Turn in and Submission 17



Chapter 1

Foreword

In community gardens across the world, data tells stories of growth, collaboration, and impact.

From tracking harvest yields that feed local families to monitoring water usage that preserves
precious resources, every measurement matters. Each data point represents someone’s dedica-
tion—a volunteer’s weekend hours, a child’s first tomato, an elderly neighbor sharing decades
of gardening wisdom.

Python, like these gardens, grows from simple seeds into something powerful and nourish-
ing. Named after Monty Python’s Flying Circus, it reminds us that learning should be joyful,
accessible, and inclusive. Today, Python helps scientists understand climate change, enables
communities to optimize resource sharing, and empowers anyone to transform raw data into
meaningful insights.

In this project, you’ll discover Python’s fundamental building blocks while analyzing real commu-
nity garden data. You’ll learn that programming, like gardening, is about nurturing growth—both
in code and in the communities we serve.

© 2025 Association 42. - All rights reserved 1



Chapter 2

AI Instructions

● Context
During your learning journey, AI can assist with many different tasks. Take the time to explore
the various capabilities of AI tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it’s code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

● Main message
☛ Use AI to reduce repetitive or tedious tasks.

☛ Develop prompting skills — both coding and non-coding — that will benefit your future
career.

☛ Learn how AI systems work to better anticipate and avoid common risks, biases, and
ethical issues.

☛ Continue building both technical and power skills by working with your peers.

☛ Only use AI-generated content that you fully understand and can take responsibility for.

● Learner rules:
• You should take the time to explore AI tools and understand how they work, so you can

use them ethically and reduce potential biases.

• You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

• You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by AI.

• You should always seek peer review — don’t rely solely on your own validation.

© 2025 Association 42. - All rights reserved 2



● Phase outcomes:
• Develop both general-purpose and domain-specific prompting skills.

• Boost your productivity with effective use of AI tools.

• Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

● Comments and examples:
• You’ll regularly encounter situations — exams, evaluations, and more — where you must

demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

• Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

• AI tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

• Where AI tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

✓ Good practice:

I ask AI: “How do I test a sorting function?” It gives me a few ideas. I try them out and
review the results with a peer. We refine the approach together.

✗ Bad practice:

I ask AI to write a whole function, copy-paste it into my activity. During peer-evaluation, I
can’t explain what it does or why. I lose credibility — and I fail my activity.

✓ Good practice:

I use AI to help design a parser. Then I walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

✗ Bad practice:

I let Copilot generate my code for a key part of my activity. It compiles, but I can’t explain
how it handles pipes. During the evaluation, I fail to justify and I fail my activity.

© 2025 Association 42. - All rights reserved 3



Chapter 3

Introduction

Welcome to Growing Code!

In this project, you’ll discover Python’s core concepts through community garden scenarios.
You’ll work with practical exercises that introduce fundamental programming concepts in an
engaging, real-world context.

Each exercise builds upon the previous one, helping you develop essential programming skills
while working on meaningful tasks.

IMPORTANT: For each exercise, you must write ONLY a function (not
a main program). Each file should contain only the requested function
that handles input and output directly. Do not write if __name__ ==
"__main__": blocks or call the function directly in your files.

HELPER TOOL: To help you test your exercises, there is a main.py file
provided in the attachments. Copy this file to your working directory and run
python3 main.py to test your functions easily. This helper will import and
test your functions automatically.

© 2025 Association 42. - All rights reserved 4



Chapter 4

General Instructions

• Your functions must be written in Python 3.10+

• Your code must respect the flake8 linter standards

• Each exercise must be in its own file

• Each file should contain only the requested function

• Function names must match exactly what is requested

• You don’t need to handle input validation or error cases unless explicitly mentioned

• For negative numbers or invalid inputs, the behavior is undefined (you don’t need to handle
these cases)

• Type hints are optional but recommended for learning purposes (will be introduced in Ex-
ercise 7)

Growing Code Specific Note: Since this is an introductory project focusing
on basic Python syntax, you only need to submit your individual Python func-
tion files (e.g., ft_hello_garden.py, ft_plot_area.py, etc.). Advanced
project management tools will be introduced in later projects.

© 2025 Association 42. - All rights reserved 5



Chapter 5

Exercise 0: Hello Garden

Exercise: 0

ft_hello_garden
Directory: ex0/
Files to Submit: ft_hello_garden.py
Authorized: print()

Welcome to your first Python function! Write a function named ft_hello_garden that simply
displays a welcome message to the garden community.

Example:

>>> ft_hello_garden()
Hello, Garden Community!

Write only the function ft_hello_garden(), not a main program. The
function should handle input and output directly.

This is your first step into Python programming. Notice how functions can
display messages.

© 2025 Association 42. - All rights reserved 6



Chapter 6

Exercise 1: Garden Plot Area

Exercise: 1

ft_plot_area
Directory: ex1/
Files to Submit: ft_plot_area.py
Authorized: input(), int(), print()

A community garden needs to know the area of a rectangular plot. Write a function named
ft_plot_area that asks for length and width, then calculates and displays the area.

Example:

>>> ft_plot_area()
Enter length: 5
Enter width: 3
Plot area: 15

Write only the function ft_plot_area(), not a main program. The function
should handle input and output directly.

Notice how you can store numbers and do calculations with them.

© 2025 Association 42. - All rights reserved 7



Chapter 7

Exercise 2: Harvest Total

Exercise: 2

ft_harvest_total
Directory: ex2/
Files to Submit: ft_harvest_total.py
Authorized: input(), int(), print()

A gardener harvested vegetables on 3 different days. Write a function named ft_harvest_total
that asks for the weight of each harvest and calculates the total.

Example:

>>> ft_harvest_total()
Day 1 harvest: 5
Day 2 harvest: 8
Day 3 harvest: 3
Total harvest: 16

Write only the function ft_harvest_total(), not a main program. The
function should handle input and output directly.

See how you can add numbers together and store the result.

© 2025 Association 42. - All rights reserved 8



Chapter 8

Exercise 3: Plant Age Check

Exercise: 3

ft_plant_age
Directory: ex3/
Files to Submit: ft_plant_age.py
Authorized: input(), int(), print()

Write a function named ft_plant_age that asks for a plant’s age in days and tells if it’s ready
to harvest (more than 60 days) or not.

Example:

>>>ft_plant_age()
Enter plant age in days: 75
Plant is ready to harvest!
>>> ft_plant_age()
Enter plant age in days: 45
Plant needs more time to grow.

Write only the function ft_plant_age(), not a main program. The function
should handle input and output directly.

Programs can make decisions based on the values they receive.

© 2025 Association 42. - All rights reserved 9



Chapter 9

Exercise 4: Water Reminder

Exercise: 4

ft_water_reminder
Directory: ex4/
Files to Submit: ft_water_reminder.py
Authorized: input(), int(), print()

Write a function named ft_water_reminder that asks for the number of days since last wa-
tering. If it’s more than 2 days, print "Water the plants!", otherwise print "Plants are fine".

Example:

>>> ft_water_reminder()
Days since last watering: 4
Water the plants!
>>> ft_water_reminder()
Days since last watering: 1
Plants are fine

Write only the function ft_water_reminder(), not a main program. The
function should handle input and output directly.

Notice how programs can give different responses based on conditions.

© 2025 Association 42. - All rights reserved 10



Chapter 10

Exercise 5: Count to Harvest

Exercise: 5

ft_count_harvest
Directory: ex5/
Files to Submit: ft_count_harvest_iterative.py,

ft_count_harvest_recursive.py
Authorized: input(), int(), print(), range()

Write two functions named ft_count_harvest_iterative and ft_count_harvest_recursive.
Both functions should count from 1 to a given number, printing each day until harvest time.

Example:

>>> ft_count_harvest_iterative()
Days until harvest: 5
Day 1
Day 2
Day 3
Day 4
Day 5
Harvest time!

>>> ft_count_harvest_recursive()
Days until harvest: 5
Day 1
Day 2
Day 3
Day 4
Day 5
Harvest time!

© 2025 Association 42. - All rights reserved 11



Write only the functions ft_count_harvest_iterative() and
ft_count_harvest_recursive(), not a main program. The functions
should handle input and output directly.

Sometimes you need to repeat actions. You can do this either with loops
(iteration) or by calling the same function again (recursion). What happens
when you do the same thing multiple times?

© 2025 Association 42. - All rights reserved 12



Chapter 11

Exercise 6: Garden Summary

Exercise: 6

ft_garden_summary
Directory: ex6/
Files to Submit: ft_garden_summary.py
Authorized: input(), print()

Write a function named ft_garden_summary that asks for a garden name and the number of
plants, then displays a simple summary with a fixed status message.

Example:

>>> ft_garden_summary()
Enter garden name: Community Garden
Enter number of plants: 25
Garden: Community Garden
Plants: 25
Status: Growing well!

Write only the function ft_garden_summary(), not a main program. The
function should handle input and output directly.

See how you can combine different pieces of information to create something
useful. Note that "Status: Growing well!" is a fixed message that should
always be displayed exactly as shown.

© 2025 Association 42. - All rights reserved 13



Chapter 12

Exercise 7: Seed Inventory with Type
Annotations

Exercise: 7

ft_seed_inventory
Directory: ex7/
Files to Submit: ft_seed_inventory.py
Authorized: print()

The garden coordinator needs to track seed inventory with precise data types. Write a function
named ft_seed_inventory that manages seed packets, displaying information about different
seed types and quantities.

Example:

>>> ft_seed_inventory("tomato", 15, "packets")
Tomato seeds: 15 packets available
>>> ft_seed_inventory("carrot", 8, "grams")
Carrot seeds: 8 grams total
>>> ft_seed_inventory("lettuce", 12, "area")
Lettuce seeds: covers 12 square meters

Write only the function, not a main program. The function should handle
input and output directly.

© 2025 Association 42. - All rights reserved 14



Your function signature must look like this:
def ft_seed_inventory(seed_type: str, quantity: int, unit:
str) -> None:

For the capital letter, you can use the methods available on string objects.

Support these units: "packets" (packets available), "grams" (grams total),
"area" (covers X square meters). For any other unit, print "Unknown unit
type". Write only the function, not a main program.

© 2025 Association 42. - All rights reserved 15



Chapter 13

Helper Resources

To support your learning journey, we’ve provided a main.py file that helps you test your exercises
easily.
Since you’re just starting with Python and don’t know how to write main functions yet, this
helper will:

• Import and run your exercise functions automatically

• Show clear error messages if something goes wrong

• Let you test individual exercises or all at once

• Help you understand how Python imports work

To use the helper, simply run python3 main.py in your terminal and choose which exercise to
test. Make sure your exercise files (like ft_plot_area.py) are in the same folder as main.py.

The helper file is designed to be readable and educational. Feel free to look at
the code to understand how it works, but focus on writing your own exercise
solutions first.

The helper file is for learning support only. Your submitted solutions should
be your own work and demonstrate your understanding of the concepts.

© 2025 Association 42. - All rights reserved 16



Chapter 14

Turn in and Submission

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don’t hesitate to double check the names of your files to
ensure they are correct.

During evaluation, you may be asked to explain your code, trace through
execution, or modify your solutions. Make sure you understand every line
you write.

You need to return only the files requested by the subject of this project. Fo-
cus on clean, readable code that demonstrates your understanding of Python
fundamentals.

© 2025 Association 42. - All rights reserved 17


	Foreword
	AI Instructions
	Introduction
	General Instructions
	Exercise 0: Hello Garden
	Exercise 1: Garden Plot Area
	Exercise 2: Harvest Total
	Exercise 3: Plant Age Check
	Exercise 4: Water Reminder
	Exercise 5: Count to Harvest
	Exercise 6: Garden Summary
	Exercise 7: Seed Inventory with Type Annotations
	Helper Resources
	Turn in and Submission

