
Version: 1.1

Get Next Line
Reading a line from a file descriptor is way too tedious.

Summary

This activity is about programming a function that returns a line
read from a file descriptor.

#C #Imperative #FD



Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr



Contents

1 Introduction 1

2 Common Instructions 2

3 AI Instructions 3

4 Mandatory part 5

5 Readme Requirements 7

6 Submission and peer-evaluation 8



Chapter 1

Introduction

This activity will not only allow you to add a very convenient function to your collection, but it
will also make you learn a highly interesting new concept in C programming: static variables.

© 2025 Association 42. - All rights reserved 1



Chapter 2

Common Instructions

• Your activity must be written in C.

• Your activity must be written in accordance with the Norm. If you have bonus files or
functions, they are included in the norm check, and you will receive a 0 if there is a norm
error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double free,
etc.) except for undefined behaviors. If this happens, your activity will be considered
non-functional and will receive a 0 during the review.

• All heap-allocated memory space must be properly freed when necessary. No memory leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile that will compile your source files
to the required output with the flags -Wall, -Wextra, and -Werror, using cc, and your
Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean, and re.

• If your activity allows you to use your libft, you must copy its sources and its associated
Makefile into a libft folder. Your activity’s Makefile must compile the library by using
its Makefile, then compile the activity.

• We encourage you to create test programs for your activity, even though this work will
not be submitted and will not be graded. It will give you a chance to easily test your
work and your peers’ work. You will find these tests especially useful during your defense.
Indeed, during the defense, you are free to use your tests and/or the tests of the peer you
are evaluating.

• Submit your work to your assigned Git repository. Only the work in the Git repository will
be graded. If Deepthought is assigned to grade your work, it will be done after your peer
evaluations. If an error occurs in any section of your work during Deepthought’s grading,
the review will stop.

© 2025 Association 42. - All rights reserved 2



Chapter 3

AI Instructions

● Context
This activity is designed to help you discover the fundamental building blocks of your 42 training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach to
using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, repetition,
and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the 42 train-
ing, and as an expectation in the job market — please refer to the dedicated FAQ on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices and
countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

© 2025 Association 42. - All rights reserved 3



● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your activities. But you’re here to learn,

not to prove that AI has learned. Don’t waste your time (or ours) just to demonstrate
that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability to
find one. AI gives you the answer directly, but that prevents you from building your own
reasoning. And reasoning takes time, effort, and involves failure. The path to success is
not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones, etc.
You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your interpersonal
skills and your ability to think divergently. That’s far more valuable than just chatting with
a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic in itself.
You’ll even have the chance to build your own AI software. In order to learn more about
our crescendo approach you’ll go through in the documentation available on the intranet.

✓ Good practice:

I’m stuck on a new concept. I ask someone nearby how they approached it. We talk for 10
minutes — and suddenly it clicks. I get it.

✗ Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t explain
anything. I fail. During the exam — no AI — I’m stuck again. I fail.

© 2025 Association 42. - All rights reserved 4



Chapter 4

Mandatory part

Function Name get_next_line
Prototype char *get_next_line(int fd);
Files to Submit get_next_line.c, get_next_line_utils.c,

get_next_line.h
Parameters fd: The file descriptor to read from
Return Value Read line: correct behavior

NULL: there is nothing else to read, or an error
occurred

External Functions read, malloc, free
Description Write a function that returns a line read from a file

descriptor

• Repeated calls (e.g., using a loop) to your get_next_line() function should let you read
the text file pointed to by the file descriptor, one line at a time.

• Your function should return the line that was read.
If there is nothing else to read or if an error occurred, it should return NULL.

• Make sure that your function works as expected both when reading a file and when reading
from the standard input.

• Please note that the returned line should include the terminating \n character, except if
the end of file was reached and does not end with a \n character.

• Your header file get_next_line.h must at least contain the prototype of the get_next_line()
function.

• Add all the helper functions you need in the get_next_line_utils.c file.

A good start would be to know what a static variable is.

© 2025 Association 42. - All rights reserved 5

https://en.wikipedia.org/wiki/Static_variable


• Because you will have to read files in get_next_line(), add this option to your compiler
call: -D BUFFER_SIZE=n
It will define the buffer size for read().
The buffer size value will be modified by your peer-evaluators and the Moulinette in order
to test your code.

We must be able to compile this project with and without the -D
BUFFER_SIZE flag in addition to the usual flags. You can choose the
default value of your choice.

• You will compile your code as follows (a buffer size of 42 is used as an example):
cc -Wall -Wextra -Werror -D BUFFER_SIZE=42 <files>.c

• We consider that get_next_line() has an undefined behavior if the file pointed to by
the file descriptor changed since the last call whereas read() didn’t reach the end of file.

• We also consider that get_next_line() has an undefined behavior when reading a binary
file. However, you can implement a logical way to handle this behavior if you want to.

Does your function still work if the BUFFER_SIZE value is 9999? If it is 1?
10000000? Do you know why?

Try to read as little as possible each time get_next_line() is called. If you
encounter a new line, you have to return the current line.
Don’t read the whole file and then process each line.

Forbidden

• You are not allowed to use your libft in this project.

• lseek() is forbidden.

• Global variables are forbidden.

© 2025 Association 42. - All rights reserved 6



Chapter 5

Readme Requirements

A README.md file must be provided at the root of your Git repository. Its purpose is to allow
anyone unfamiliar with the activity (peers, staff, recruiters, etc.) to quickly understand what
the activity is about, how to run it, and where to find more information on the topic.
The README.md must include at least:

• The very first line must be italicized and read: This activity has been created as part of
the 42 curriculum by <login1>[, <login2>[, <login3>[...]]].

• A "Description" section that clearly presents the activity, including its goal and a brief
overview.

• An "Instructions" section containing any relevant information about compilation, instal-
lation, and/or execution.

• A "Resources" section listing classic references related to the topic (documentation,
articles, tutorials, etc.), as well as a description of how AI was used — specifying for
which tasks and which parts of the activity.

➠ Additional sections may be required depending on the activity (e.g., usage examples,
feature list, technical choices, etc.).

Any required additions will be explicitly listed below.

• A detailed explanation and justification of the algorithm selected for this project must also
be included.

English is recommended; alternatively, you may use the main language of
your campus.

© 2025 Association 42. - All rights reserved 7



Chapter 6

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don’t hesitate to double check the names of your files to
ensure they are correct.

When writing your tests, remember that:
1) Both the buffer size and the line size can be of very different values.
2) A file descriptor does not only point to regular files.
Be smart and cross-check with your peers. Prepare a full set of diverse tests
for defense.

Once passed, do not hesitate to add your get_next_line() to your libft.

During the review, a brief modification of the activity may occasionally be requested. This
could involve a minor behavior change, a few lines of code to write or rewrite, or an easy-to-add
feature.

While this step may not be applicable to every activity, you must be prepared for it if it is
mentioned in the review guidelines.

This step is meant to verify your actual understanding of a specific part of the activity. The
modification can be performed in any development environment you choose (e.g., your usual
setup), and it should be feasible within a few minutes — unless a specific timeframe is defined
as part of the review.
You can, for example, be asked to make a small update to a function or script, modify a display,
or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the review guidelines and may vary from
one review to another for the same activity.

© 2025 Association 42. - All rights reserved 8


	Introduction
	Common Instructions
	AI Instructions
	Mandatory part
	Readme Requirements
	Submission and peer-evaluation

