Version: 1.0

The Codex

Mastering Python’s Import Mysteries

f Summary \

Discover the ancient art of Python imports through alchemical
experiments. Master the four sacred mysteries: package
initialization, import pathways, absolute vs relative transmutations,
and breaking circular dependencies.

- J

[#Python j [F#Imports] [#Alchemy J

L7

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:

e Personal use: You are permitted to use the contents of this module solely for personal
purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

e Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:

Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Foreword 1
2 Al Instructions 2
3 Introduction 4
4 General Instructions 5
4.1 Authorized and Forbidden 5
4.2 Laboratory Structure 6
5 Mandatory part 7
5.1 Part|: The Sacred Scroll 7
5.2 Part ll: Import Transmutation 10
5.3 Part lll: The Great Pathway Debate 12
5.4 Part IV: Breaking the Circular Curse 14

6 Submission Instructions 16

//

Chapter 1

Foreword

Welcome to the Alchemist's Laboratory, young apprentice!

You've mastered the basic elements of Python - variables, functions, classes, and data struc-
tures. Now it's time to learn the ancient art of code transmutation through Python's import
system.

In medieval times, alchemists sought to transform base metals into gold. Today, as a Python
alchemist, you'll learn to transform scattered code into organized, reusable magical formulas.
Just as ancient alchemists had their grimoires (spell books) organized into chapters and sections,
Python code must be organized into modules and packages.

But beware! The path of the alchemist is fraught with mysteries:

e The Sacred Scroll of _ init_ .py - the gateway that transforms a simple folder into a
magical package

e The Art of Import Transmutation - summoning code from distant modules

e The Great Debate of Pathways - absolute vs relative imports, like choosing between dif-
ferent alchemical formulas

e The Curse of Circular Dependencies - when spells reference each other in an endless loop,
threatening to tear apart the fabric of your code!

In this codex, you'll build your own Alchemical Laboratory - a complete Python package that
demonstrates these four sacred mysteries. Each experiment will teach you one aspect of
Python's import magic.

By the end, you'll understand how to organize code like a master alchemist, avoiding the pitfalls
that have trapped many apprentices before you.

(© 2025 Association 42. - All rights reserved

//

Chapter 2

Al Instructions

® Context

During your learning journey, Al can assist with many different tasks. Take the time to explore
the various capabilities of Al tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it's code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

@® Main message

Use Al to reduce repetitive or tedious tasks.

Develop prompting skills — both coding and non-coding — that will benefit your future
career.

Learn how Al systems work to better anticipate and avoid common risks, biases, and
ethical issues.

Continue building both technical and power skills by working with your peers.

Only use Al-generated content that you fully understand and can take responsibility for.

@® Learner rules:

e You should take the time to explore Al tools and understand how they work, so you can
use them ethically and reduce potential biases.

e You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

e You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by Al.

e You should always seek peer review — don't rely solely on your own validation.

(© 2025 Association 42. - All rights reserved

//

@® Phase outcomes:

e Develop both general-purpose and domain-specific prompting skills.
e Boost your productivity with effective use of Al tools.

e Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

® Comments and examples:

e You'll regularly encounter situations — exams, evaluations, and more — where you must
demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

e Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

e Al tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

e Where Al tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

v Good practice:

| ask Al: “How do | test a sorting function?” It gives me a few ideas. | try them out and
review the results with a peer. We refine the approach together.

X Bad practice:

| ask Al to write a whole function, copy-paste it into my activity. During peer-evaluation, |
can't explain what it does or why. | lose credibility — and | fail my activity.

v Good practice:

| use Al to help design a parser. Then | walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

X Bad practice:

| let Copilot generate my code for a key part of my activity. It compiles, but | can't explain
how it handles pipes. During the evaluation, | fail to justify and | fail my activity.

(© 2025 Association 42. - All rights reserved

//

Chapter 3

Introduction

Welcome to The Alchemist's Codex!

As an apprentice alchemist, you'll discover Python's import system through hands-on magical
experiments. Each experiment builds upon the previous one, creating a complete Alchemical
Laboratory package that demonstrates professional Python organization.

PREREQUISITES REQUIRED: This activityassumes solid mastery of
Python fundamentals including syntax, functions, classes, error handling,
lists, dictionaries, and data structures. You should be comfortable writing
Python classes, handling exceptions, and working with collections before at-
tempting this import-focused activity. Without these foundations, the import
concepts will be difficult to understand.

Focus on understanding how imports work, not just making them work. A
true alchemist understands every step of the transmutation process!

This activityis about code organization and import mechanisms. Keep
your alchemical formulas simple (basic functions) so you can focus on the
Import concepts.

ERROR HANDLING: All functions should return strings. When testing im-
ports that might fail (like accessing hidden functions), use try/except blocks
and return descriptive error messages instead of letting the program crash.

(© 2025 Association 42. - All rights reserved

42

Chapter 4

General Instructions

4.1 Authorized and Forbidden

AUTHORIZED INGREDIENTS:

e Python version 3.10+.

All Python standard library modules (datetime, math, os, sys, etc.)

Creating your own modules and packages

All import styles: import, from...import, import...as

Creating __init__ .py files (Sacred Scrolls)

Absolute and relative imports

Type hints and annotations

FORBIDDEN DARK MAGIC:

e External libraries (no pip install)

Using eval() or exec() (dangerous transmutations)

Modifying sys.path directly

Using importlib for dynamic imports

Complex algorithms (keep your spells simple)

(© 2025 Association 42. - All rights reserved H

4.2

47

Laboratory Structure

You'll build your Alchemical Laboratory progressively through four parts:

Part I: The Sacred Scroll (___init__ .py mystery)
Part Il: Import Transmutation (from...import mastery)
Part 11I: The Great Pathway Debate (absolute vs relative)

Part IV: Breaking the Circular Curse (dependency resolution)

Final Laboratory Structure:

alchemy/ - Your main laboratory package
alchemy/elements.py - Basic elemental spell functions
alchemy/potions.py - Advanced potion recipe functions
alchemy/transmutation/ - Transformation spell package

alchemy/grimoire/ - Spell documentation package

IMPORTANT: All functions should be simple and return strings. Focus on

Import concepts, not complex logic. Handle errors by returning descriptive
error messages as strings.

(© 2025 Association 42. - All rights reserved

//

Chapter 5

Mandatory part

5.1 Part I: The Sacred Scroll

Objective

Discover the power of init .py - the sacred scroll that transforms ordinary folders into
magical Python packages.

Files to create for Part |

e ft_sacred_scroll.py - Demonstration script (at repository root)
e alchemy/__init__.py - The main sacred scroll

e alchemy/elements.py - Basic elemental spells

Instructions

Create your first alchemical package and learn how _init_ .py controls what magic is avail-
able to other alchemists.

alchemy/elements.py should contain:
e create_fire() - Returns "Fire element created"
e create_water() - Returns "Water element created"
e create_earth() - Returns "Earth element created"

e create_air() - Returns "Air element created"

(© 2025 Association 42. - All rights reserved

//

alchemy/ init__ .py must contain exactly:
e __version__ = "1.0.0"

e __author__ = "Master Pythonicus"

e Import and expose ONLY create_fire and create_water from elements.py
e Do NOT expose create_earth and create_air (they remain hidden)

e Use: from .elements import create_fire, create_water

The init__ .py file controls package interface. Functions imported here

become available as alchemy.function_name. Functions not imported re-
main hidden and require direct module access.

Expected Output Example:

Test your sacred scroll:

$> python3 ft_sacred_scroll.py
=== Sacred Scroll Mastery ===

Testing direct module access:
alchemy.elements.create_fire(): Fire element created
alchemy.elements.create_water(): Water element created
alchemy.elements.create_earth(): Earth element created
alchemy.elements.create_air(): Air element created

Testing package-level access (controlled by __init__.py):
alchemy.create_fire(): Fire element created
alchemy.create_water(): Water element created
alchemy.create_earth(): AttributeError - not exposed
alchemy.create_air(): AttributeError - not exposed

Package metadata:
Version: 1.0.0
Author: Master Pythonicus

(© 2025 Association 42. - All rights reserved

Your ft sacred scroll.py should demonstrate both direct module access
(alchemy.elements.function) and package-level access (alchemy.function).

Handle AttributeError exceptions gracefully by printing error messages.

How does the Sacred Scroll (__init___.py) control which spells are available
to other alchemists? What's the difference between what exists in a module
and what's exposed by the package?

(© 2025 Association 42. - All rights reserved

//

5.2 Part II: Import Transmutation

Objective

Master the art of from...import - summoning specific spells from distant grimoires without bring-
ing the entire book.

Files to create for Part 1l

e ft_import_transmutation.py - Demonstration script (at repository root)

e alchemy/potions.py - Advanced potion recipes

Instructions

Expand your laboratory and learn different ways to summon magical formulas.

alchemy/potions.py must contain exactly:
e healing_potion() - Returns "Healing potion brewed with [fire result] and [water result]"
e strength_potion() - Returns "Strength potion brewed with [earth result] and [fire result]"

e invisibility_potion() - Returns "Invisibility potion brewed with [air result] and [wa-
ter result]"

e wisdom_potion() - Returns "Wisdom potion brewed with all elements: [all four results]"

then return a string that includes the elemental results. For example: from
.elements import create_fire, create_water

: Each potion function must import and call the required elemental functions,

Your demonstration should show:

e Different import styles: import alchemy.elements

Specific imports: from alchemy.elements import create_fire

Aliased imports: from alchemy.potions import healing potion as heal

Multiple imports: from alchemy.elements import create_fire, create_water

How each style affects your code differently

(© 2025 Association 42. - All rights reserved

10

Expected Output Example:

Test your transmutation methods:

$> python3 ft_import_transmutation.py
=== Import Transmutation Mastery ===

Method 1 - Full module import:
alchemy.elements.create_fire(): Fire element created

Method 2 - Specific function import:
create_water(): Water element created

Method 3 - Aliased import:
heal(): Healing potion brewed with Fire element created and Water
element created

Method 4 - Multiple imports:

create_earth(): Earth element created

create_fire(): Fire element created

strength_potion(): Strength potion brewed with Earth element
created and Fire element created

All import transmutation methods mastered!

Your ft_import transmutation.py should demonstrate all four import styles
clearly. Each method should show the import statement used and the func-
tion call result.

\What are the advantages and disadvantages of each import transmutation
method? When would you use import module vs from module import
function?

(© 2025 Association 42. - All rights reserved 11

//

5.3 Part lIl: The Great Pathway Debate

Objective

Understand the ancient debate between absolute and relative imports - two different paths to
reach the same magical formula.

Files to create for Part Il

e ft_pathway_debate.py - Demonstration script (at repository root)
e alchemy/transmutation/__init__.py - Transmutation package initializer
e alchemy/transmutation/basic.py - Basic transmutations

e alchemy/transmutation/advanced.py - Advanced transmutations

Instructions

Create a complex laboratory structure and learn when to use each pathway type.

alchemy/transmutation/basic.py must contain exactly:
e Absolute import: from alchemy.elements import create_fire, create_earth
e lead_to_gold() - Returns "Lead transmuted to gold using [fire result]"

e stone_to_gem() - Returns "Stone transmuted to gem using [earth result]"

alchemy/transmutation/advanced.py must contain exactly:
e Relative import: from .basic import lead_to_gold
e Relative import: from ..potions import healing_potion

e philosophers_stone () - Returns "Philosopher’s stone created using [lead to gold result]
and [healing potion result]"

e elixir_of_life() - Returns "Elixir of life: eternal youth achieved!"

alchemy/transmutation/ __init__ .py must contain:
e from .basic import lead_to_gold, stone_to_gem

e from .advanced import philosophers_stone, elixir_of_life

@ The transmutation package init .py exposes all transmutation func-

tions for easy access. This demonstrates package-level organization.

(© 2025 Association 42. - All rights reserved 12

Expected Output Example:

Test your pathway methods:

$> python3 ft_pathway_debate.py
=== Pathway Debate Mastery ===

Testing Absolute Imports (from basic.py):
lead_to_gold(): Lead transmuted to gold using Fire element created
stone_to_gem(): Stone transmuted to gem using Earth element created

Testing Relative Imports (from advanced.py):
philosophers_stone(): Philosopher’s stone created using Lead
transmuted to gold using Fire element created and Healing potion
brewed with Fire element created and Water element created
elixir_of_life(): Elixir of life: eternal youth achieved!

Testing Package Access:

alchemy.transmutation.lead_to_gold(): Lead transmuted to gold using
Fire element created

alchemy.transmutation.philosophers_stone(): [same as above]

Both pathways work! Absolute: clear, Relative: concise

Your ft _pathway debate.py should demonstrate the difference between ab-
solute imports (full path) and relative imports (dots). Show how both meth-
ods access the same functions.

When should an alchemist use absolute pathways vs relative pathways? What
are the trade-offs between clarity and conciseness?

(© 2025 Association 42. - All rights reserved 13

//

5.4 Part IV: Breaking the Circular Curse

Objective

Learn to identify and break the dreaded Circular Dependency Curse - when spells try to summon
each other in an endless loop, threatening to destroy your laboratory!

Files to create for Part IV

e ft_circular_curse.py - Demonstration script (at repository root)
e alchemy/grimoire/__init__.py - Grimoire package initializer
e alchemy/grimoire/spellbook.py - Records spells and their effects

e alchemy/grimoire/validator.py - Validates spell ingredients

Instructions

Create a scenario that would cause circular imports, then learn the ancient techniques to break
the curse.

alchemy/grimoire/ _init __ .py must contain:
e from .spellbook import record_spell

e from .validator import validate_ingredients

alchemy/grimoire/validator.py must contain exactly:

e validate_ingredients(ingredients: str) -> str- Returns "[ingredients]- VALID"
or "[ingredients] - INVALID"

e Simple validation: ingredients containing "fire", "water", "earth", or "air" are valid

e Any other ingredients are invalid

alchemy/grimoire/spellbook.py must contain exactly:

e record_spell(spell_name: str, ingredients: str) -> str - Records spells af-
ter validation

e Must use validator.py to check ingredients before recording (use late import to avoid
circular dependency)

e Returns "Spell recorded: [spell name] ([validation result])" if valid

e Returns "Spell rejected: [spell name] ([validation result])" if invalid

(© 2025 Association 42. - All rights reserved

14

//

Breaking the circular curse - choose ONE method:
e Method 1 - Late Import: Import validator inside the record spell function
e Method 2 - Dependency Injection: Pass validator function as parameter

e Method 3 - Shared Module: Create separate validation utilities

standing by explaining the problem and implementing one solution method.

2 DO NOT create actual circular imports in your code! Demonstrate under-

Expected Output Example:

Test your curse-breaking techniques:

$> python3 ft_circular_curse.py
=== (Circular Curse Breaking ===

Testing ingredient validation:
validate_ingredients("fire air"): fire air - VALID
validate_ingredients("dragon scales"): dragon scales - INVALID

Testing spell recording with validation:

record_spell("Fireball", "fire air"): Spell recorded: Fireball
(fire air - VALID)

record_spell("Dark Magic", "shadow"): Spell rejected: Dark Magic
(shadow - INVALID)

Testing late import technique:
record_spell("Lightning", "air"): Spell recorded: Lightning (air -
VALID)

Circular dependency curse avoided using late imports!
All spells processed safely!

Your ft_circular _curse.py should demonstrate how to avoid circular imports
by using late imports (importing inside functions) or dependency injection.
Show both valid and invalid ingredient examples.

\What causes the Circular Dependency Curse and why is it dangerous? Which
curse-breaking technique is most appropriate for different situations?

(© 2025 Association 42. - All rights reserved

//

Chapter 6

Submission Instructions

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense.

File Organization:
All files and directories must be created at the root of your Git repository:

e ft_sacred_scroll.py - at repository root

e ft_import_transmutation.py - at repository root

e ft_pathway_debate.py - at repository root

e ft_circular_curse.py - at repository root

e alchemy/ - directory at repository root

e alchemy/__init__.py - inside alchemy directory

e alchemy/elements.py - inside alchemy directory

e alchemy/potions.py - inside alchemy directory

e alchemy/transmutation/ - subdirectory inside alchemy

e alchemy/transmutation/__init__.py - inside transmutation directory
e alchemy/transmutation/basic.py - inside transmutation directory

e alchemy/transmutation/advanced.py - inside transmutation directory
e alchemy/grimoire/ - subdirectory inside alchemy

e alchemy/grimoire/__init__.py - inside grimoire directory

e alchemy/grimoire/spellbook.py - inside grimoire directory

e alchemy/grimoire/validator.py - inside grimoire directory

(© 2025 Association 42. - All rights reserved

16

During evaluation, you may be asked to explain import mechanisms, demon-
strate different import styles, or modify your alchemical laboratory. Make
sure you understand the four sacred mysteries, not just the implementation.

Focus on clean, well-organized code that clearly demonstrates Python's im-
port system. The alchemical functions should be simple - the complexity is
In mastering the import mysteries.

FINAL REMINDER: This activity requires solid mastery of Python funda-
mentals. If you struggle with basic Python syntax, functions, classes, lists,
dictionaries, or error handling, strengthen these skills first. Import mastery
builds upon these foundations - attempting this activit ywithout them will
lead to confusion and frustration.

A true Python alchemist unde
well-organized laboratory - eve
quickly when you need it!

(© 2025 Association 42. - All rights reserved

17

	Foreword
	AI Instructions
	Introduction
	General Instructions
	Authorized and Forbidden
	Laboratory Structure

	Mandatory part
	Part I: The Sacred Scroll
	Part II: Import Transmutation
	Part III: The Great Pathway Debate
	Part IV: Breaking the Circular Curse

	Submission Instructions

