
Version: 1.0

CodeCultivation
Object-Oriented Garden Systems

Summary

Build a comprehensive digital garden ecosystem while discovering
advanced Python concepts. Create tools to manage community
gardens efficiently through data-driven approaches.

#Python #DataEngineering #GrowthMindset

Intellectual Property Disclaimer

All content presented in this training module, including but not limited to texts, images, graphics,
and other materials, is protected by intellectual property rights held by Association 42.

Terms of Use:
• Personal use: You are permitted to use the contents of this module solely for personal

purpose. Any commercial use, reproduction, distribution, modification, or public display is
strictly prohibited without prior written permission from Association 42.

• Respect for Integrity: You must not alter, transform, or adapt the content in any way
that could harm its integrity.

Protection of Rights:
Any violation of these terms constitutes an infringement of intellectual property rights and may
result in legal action. We reserve the right to take all necessary measures to protect our rights,
including but not limited to claims for damages.

For any questions regarding the use of the content or to obtain authorization, please contact:
legal@42.fr

Contents

1 Foreword 1

2 AI Instructions 2

3 Introduction 4

4 General Instructions 5

5 Exercise 0: Planting Your First Seed 6

6 Exercise 1: Garden Data Organizer 8

7 Exercise 2: Plant Growth Simulator 10

8 Exercise 3: Plant Factory 12

9 Exercise 4: Garden Security System 14

10 Exercise 5: Specialized Plant Types 16

11 Exercise 6: Garden Analytics Platform 18

12 Turn in and Submission 20

Chapter 1

Foreword

In the digital age, even gardens need smart systems.

A wise gardener once said: "You can’t plant flowers and then pull them up every day to see how
the roots are doing." The same applies to code—sometimes the most beautiful growth happens
when we trust the process and let our programs develop naturally, layer by layer.

Behind every thriving community garden lies a network of relationships. Plants don’t grow in
isolation; they form communities where each species contributes something unique while shar-
ing common needs. Some plants protect others from pests, some fix nitrogen in the soil, and
others provide shade for delicate seedlings. This interconnected web of mutual support mirrors
how well-designed software systems work—individual components with distinct roles, working
together harmoniously.

Just as a master gardener knows that healthy soil produces healthy plants, experienced pro-
grammers understand that well-structured code grows into robust applications. You’ll discover
that organizing your code is like planning a garden: some elements need protection, others need
room to grow, and the best systems emerge when everything has its proper place and purpose.

In this project, you’ll cultivate your programming skills while building tools that could genuinely
help community gardens flourish. Every line of code you write is a seed planted in the digital
soil of possibility.

© 2025 Association 42. - All rights reserved 1

Chapter 2

AI Instructions

● Context
During your learning journey, AI can assist with many different tasks. Take the time to explore
the various capabilities of AI tools and how they can support your work. However, always ap-
proach them with caution and critically assess the results. Whether it’s code, documentation,
ideas, or technical explanations, you can never be completely sure that your question was well-
formed or that the generated content is accurate. Your peers are a valuable resource to help
you avoid mistakes and blind spots.

● Main message
☛ Use AI to reduce repetitive or tedious tasks.

☛ Develop prompting skills — both coding and non-coding — that will benefit your future
career.

☛ Learn how AI systems work to better anticipate and avoid common risks, biases, and
ethical issues.

☛ Continue building both technical and power skills by working with your peers.

☛ Only use AI-generated content that you fully understand and can take responsibility for.

● Learner rules:
• You should take the time to explore AI tools and understand how they work, so you can

use them ethically and reduce potential biases.

• You should reflect on your problem before prompting — this helps you write clearer, more
detailed, and more relevant prompts using accurate vocabulary.

• You should develop the habit of systematically checking, reviewing, questioning, and test-
ing anything generated by AI.

• You should always seek peer review — don’t rely solely on your own validation.

© 2025 Association 42. - All rights reserved 2

● Phase outcomes:
• Develop both general-purpose and domain-specific prompting skills.

• Boost your productivity with effective use of AI tools.

• Continue strengthening computational thinking, problem-solving, adaptability, and collab-
oration.

● Comments and examples:
• You’ll regularly encounter situations — exams, evaluations, and more — where you must

demonstrate real understanding. Be prepared, keep building both your technical and in-
terpersonal skills.

• Explaining your reasoning and debating with peers often reveals gaps in your understanding.
Make peer learning a priority.

• AI tools often lack your specific context and tend to provide generic responses. Your peers,
who share your environment, can offer more relevant and accurate insights.

• Where AI tends to generate the most likely answer, your peers can provide alternative
perspectives and valuable nuance. Rely on them as a quality checkpoint.

✓ Good practice:

I ask AI: “How do I test a sorting function?” It gives me a few ideas. I try them out and
review the results with a peer. We refine the approach together.

✗ Bad practice:

I ask AI to write a whole function, copy-paste it into my activity. During peer-evaluation, I
can’t explain what it does or why. I lose credibility — and I fail my activity.

✓ Good practice:

I use AI to help design a parser. Then I walk through the logic with a peer. We catch two
bugs and rewrite it together — better, cleaner, and fully understood.

✗ Bad practice:

I let Copilot generate my code for a key part of my activity. It compiles, but I can’t explain
how it handles pipes. During the evaluation, I fail to justify and I fail my activity.

© 2025 Association 42. - All rights reserved 3

Chapter 3

Introduction

Welcome to Code Cultivation!

Building on your Python fundamentals from the first activity, you’ll now tackle more complex
programming challenges through creating a comprehensive garden data management system.
This project introduces advanced concepts that make Python a powerful tool for modeling real-
world systems.

You’ll work on:

• Understanding how Python programs are structured and executed

• Organizing complex data structures efficiently

• Creating reusable code components

• Building systems that can adapt and extend

• Protecting data integrity in collaborative environments

• Designing scalable software architectures

Each exercise builds upon previous ones, creating a complete digital garden ecosystem by the end.

IMPORTANT: This module starts with basic Python program structure, then
progresses to Object-Oriented Programming. Each exercise should contain
the requested definitions and any required code. You may include simple
test code at the bottom of each file using if __name__ == "__main__":
blocks for your own testing.

© 2025 Association 42. - All rights reserved 4

Chapter 4

General Instructions

• Your code must be written in Python 3.10+

• Your code must respect the flake8 linter standards

• Each exercise must be in its own file

• Use proper naming conventions: classes in PascalCase, functions and variables in snake_case

• Include docstrings for functions, classes and methods

• Type hints are encouraged for all functions and methods

• You don’t need to handle input validation unless explicitly mentioned

• Focus on demonstrating programming concepts clearly

• Your programs must always run without errors

Digital Garden Ecosystem Note: This project focuses on Python program-
ming concepts, starting from basic program structure and progressing to
Object-Oriented Programming. Each exercise introduces new features while
building a cohesive garden management system. Later exercises will reuse
concepts from earlier ones.

© 2025 Association 42. - All rights reserved 5

Chapter 5

Exercise 0: Planting Your First Seed

Exercise: 0

ft_garden_intro
Directory: ex0/
Files to Submit: ft_garden_intro.py
Authorized: print(), if __name__ == "__main__"

Before we can build complex garden management systems, you need to understand how Python
programs work.
Every Python program needs a starting point - a place where execution begins. Just like planting
your first seed in a garden, this is where your programming journey begins!

Your task is to create your very first Python program that displays information about a plant in
your garden.

Requirements:

• Create a program that runs when executed directly

• Use the special if __name__ == "__main__": pattern

• Store plant information in simple variables (name, height, age)

• Display the plant information using print()

Example:

$> python3 ft_garden_intro.py
=== Welcome to My Garden ===
Plant: Rose
Height: 25cm
Age: 30 days

=== End of Program ===

© 2025 Association 42. - All rights reserved 6

This is your first seed planted in the garden of Python programming! Under-
standing how programs start and execute is fundamental before moving to
more complex concepts like functions and classes.

What happens if you remove the if __name__ == "__main__": line? Try
it and observe the difference! Also, have you noticed that some Python files
start with a special line beginning with #!? Research what this "shebang" line
does and why it might be useful for making your scripts executable directly.

© 2025 Association 42. - All rights reserved 7

Chapter 6

Exercise 1: Garden Data Organizer

Exercise: 1

ft_garden_data
Directory: ex1/
Files to Submit: ft_garden_data.py
Authorized: class, __init__, print()

The community garden needs to track multiple plants with their information. You need to store
and display data for several plants efficiently.

Each plant has:

• A name

• Height in centimeters

• Age in days

Create a program that manages data for at least 3 different plants and displays their information
in an organized way.

You must create a Plant class that serves as a blueprint for any plant, rather than handling each
one individually. For example, every plant might have a name, height, and age - but you’ll need
a way to organize this data that makes sense
.
Required: Create a Plant blueprint that can represent any plant with its attributes.

© 2025 Association 42. - All rights reserved 8

Example:

$> python3 ft_garden_data.py
=== Garden Plant Registry ===
Rose: 25cm, 30 days old
Sunflower: 80cm, 45 days old
Cactus: 15cm, 120 days old

How are you currently storing plant information? What challenges might
arise with more plants?

© 2025 Association 42. - All rights reserved 9

Chapter 7

Exercise 2: Plant Growth Simulator

Exercise: 2

ft_plant_growth
Directory: ex2/
Files to Submit: ft_plant_growth.py
Authorized: class, __init__, print()

The garden manager wants to simulate plant growth over time. You need to track how plants
change and provide operations to modify their state.

Requirements:

• Reuse your Plant class from Exercise 1

• Plants need to be able to grow() and age() - think about what actions a plant can
perform

• You’ll need a way to get_info() about the current plant status

• Simulate a week of growth for multiple plants

• Consider how plants should change over time through their own actions

Your program should show plants changing over time. Think about giving your plants behaviors
they can perform on themselves.

© 2025 Association 42. - All rights reserved 10

Example:

$> python3 ft_plant_growth.py
=== Day 1 ===
Rose: 25cm, 30 days old
=== Day 7 ===
Rose: 31cm, 36 days old
Growth this week: +6cm

How are you handling the operations on plant data? Is there repetition in
your code?

© 2025 Association 42. - All rights reserved 11

Chapter 8

Exercise 3: Plant Factory

Exercise: 3

ft_plant_factory
Directory: ex3/
Files to Submit: ft_plant_factory.py
Authorized: class, __init__, print()

The garden center needs to create many plants quickly using your Plant class with different
starting values. You need to streamline the plant creation process and initialize them properly.

Requirements:

• Plants need to be created with their initial information (name, starting height, starting
age)

• Each plant should be ready to use immediately after construction

• Create at least 5 different plants with varying characteristics

• Display all created plants in an organized format

• Think about how you can streamline the plant creation process

Consider how you might set up plants with their starting values efficiently. What would make
creating many plants easier?

© 2025 Association 42. - All rights reserved 12

Example:

$> python3 ft_plant_factory.py
=== Plant Factory Output ===
Created: Rose (25cm, 30 days)
Created: Oak (200cm, 365 days)
Created: Cactus (5cm, 90 days)
Created: Sunflower (80cm, 45 days)
Created: Fern (15cm, 120 days)

Total plants created: 5

How are you currently initializing your plants? Is there a more efficient way
to set them up?

© 2025 Association 42. - All rights reserved 13

Chapter 9

Exercise 4: Garden Security System

Exercise: 4

ft_garden_security
Directory: ex4/
Files to Submit: ft_garden_security.py
Authorized: class, __init__, def, print(), setter/getter

(custom)

The garden manager is concerned about data integrity. Some volunteers accidentally corrupted
plant data by setting invalid values (negative heights, impossible ages). You need to create a
secure system that protects and encapsulates sensitive data.

Requirements:

• Create a SecurePlant that protects its data from corruption

• Provide controlled ways to modify plant data: set_height(), set_age()

• Provide safe ways to access plant data: get_height(), get_age()

• Ensure plant height cannot be negative through validation

• Ensure plant age cannot be negative through validation

• Print error messages when invalid values are attempted

• Think about encapsulation - protecting important data from direct access

Consider how you might create a system that validates data before storing it, ensuring data
integrity.

© 2025 Association 42. - All rights reserved 14

Example:

$> python3 ft_garden_security.py
=== Garden Security System ===
Plant created: Rose
Height updated: 25cm [OK]
Age updated: 30 days [OK]

Invalid operation attempted: height -5cm [REJECTED]
Security: Negative height rejected

Current plant: Rose (25cm, 30 days)

How can you protect your data from being accidentally corrupted? What
mechanisms could you put in place?

© 2025 Association 42. - All rights reserved 15

Chapter 10

Exercise 5: Specialized Plant Types

Exercise: 5

ft_plant_types
Directory: ex5/
Files to Submit: ft_plant_types.py
Authorized: class, __init__, super(), print()

The garden now needs to handle different types of plants: flowers, trees, and vegetables. Each
type has unique characteristics but inherits common plant features from their parent category.

Requirements:

• Start with a base Plant that has common features (name, height, age)

• Create specialized types: Flower, Tree, and Vegetable

• Each specialized type should inherit the basic plant features

• Flower needs: color attribute and ability to bloom()

• Tree needs: trunk_diameter and ability to produce_shade()

• Vegetable needs: harvest_season and nutritional_value

• When creating specialized plants, call the parent setup with super().__init__()

• Create at least 2 instances of each plant type

• Avoid duplicating common plant code across different specialized types

Think about family relationships in nature - how do species share traits while having unique
characteristics?

© 2025 Association 42. - All rights reserved 16

Example:

$> python3 ft_plant_types.py
=== Garden Plant Types ===

Rose (Flower): 25cm, 30 days, red color
Rose is blooming beautifully!

Oak (Tree): 500cm, 1825 days, 50cm diameter
Oak provides 78 square meters of shade

Tomato (Vegetable): 80cm, 90 days, summer harvest
Tomato is rich in vitamin C

Notice how much code you might be duplicating. Each plant type shares
common features but has unique characteristics. Think about family rela-
tionships in nature—how do species share traits?

How are you handling the common features shared by all plant types? Is
there a way to avoid repeating the same code by creating a family tree of
related types?

© 2025 Association 42. - All rights reserved 17

Chapter 11

Exercise 6: Garden Analytics Platform

Exercise: 6

ft_garden_analytics
Directory: ex6/
Files to Submit: ft_garden_analytics.py
Authorized: class, __init__, super(), print(), staticmethod(),

classmethod()

Build a comprehensive garden data analytics platform that processes and analyzes garden data.
This system needs to handle complex data relationships and provide detailed analytics using
nested components and inheritance chains.

Requirements:

• Create a GardenManager that can handle multiple gardens

• Include a helper GardenStats inside your manager for calculating statistics

• Build a plant family tree: Plant → FloweringPlant → PrizeFlower

• Include a method create_garden_network() that works on the manager type itself

• Add utility functions that don’t need specific garden data

• Show different types of methods: instance methods, class-level methods, and utility func-
tions

• Each garden should track plant collections and statistics

• Use your nested statistics helper to calculate analytics

• Organize everything within appropriate structures - avoid scattered global functions

Consider how you might organize complex systems with multiple interacting components. What
happens when you need different types of methods?

© 2025 Association 42. - All rights reserved 18

Example:

$> python3 ft_garden_analytics.py
=== Garden Management System Demo ===

Added Oak Tree to Alice’s garden
Added Rose to Alice’s garden
Added Sunflower to Alice’s garden

Alice is helping all plants grow...
Oak Tree grew 1cm
Rose grew 1cm
Sunflower grew 1cm

=== Alice’s Garden Report ===
Plants in garden:
- Oak Tree: 101cm
- Rose: 26cm, red flowers (blooming)
- Sunflower: 51cm, yellow flowers (blooming), Prize points: 10

Plants added: 3, Total growth: 3cm
Plant types: 1 regular, 1 flowering, 1 prize flowers

Height validation test: True
Garden scores - Alice: 218, Bob: 92
Total gardens managed: 2

This exercise brings together all the programming patterns you’ve learned
throughout the project. You will be evaluated on your understanding of
how different components interact and organize themselves within a complex
system.

How do you organize complex systems with multiple interacting components?
What happens when you need different types of methods that belong to the
class itself rather than individual instances?

© 2025 Association 42. - All rights reserved 19

Chapter 12

Turn in and Submission

Turn in your assignment in your Git repository as usual. Only the work inside your repository
will be evaluated during the defense. Don’t hesitate to double check the names of your files to
ensure they are correct.

During evaluation, you may be asked to explain programming concepts,
demonstrate inheritance relationships, or extend your code with new function-
ality. Make sure you understand the principles behind your implementations.

You need to return only the files requested by the subject of this project. Fo-
cus on clean, well-documented code that clearly demonstrates programming
principles.

© 2025 Association 42. - All rights reserved 20

	Foreword
	AI Instructions
	Introduction
	General Instructions
	Exercise 0: Planting Your First Seed
	Exercise 1: Garden Data Organizer
	Exercise 2: Plant Growth Simulator
	Exercise 3: Plant Factory
	Exercise 4: Garden Security System
	Exercise 5: Specialized Plant Types
	Exercise 6: Garden Analytics Platform
	Turn in and Submission

